Suppr超能文献

人工智能和机器学习在诊断、治疗和结局预测方面的潜在应用,以解决慢性肢体威胁性缺血的医疗保健差异问题。

Potential applications of artificial intelligence and machine learning on diagnosis, treatment, and outcome prediction to address health care disparities of chronic limb-threatening ischemia.

机构信息

Interdisciplinary Consortium on Advanced Motion Performance, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX.

Department of Computer Science, Tissue Image Analytics Centre, University of Warwick, Coventry, UK.

出版信息

Semin Vasc Surg. 2023 Sep;36(3):454-459. doi: 10.1053/j.semvascsurg.2023.06.003. Epub 2023 Jun 24.

Abstract

Chronic limb-threatening ischemia (CLTI) is the most advanced form of peripheral artery disease. CLTI has an extremely poor prognosis and is associated with considerable risk of major amputation, cardiac morbidity, mortality, and poor quality of life. Early diagnosis and targeted treatment of CLTI is critical for improving patient's prognosis. However, this objective has proven elusive, time-consuming, and challenging due to existing health care disparities among patients. In this article, we reviewed how artificial intelligence (AI) and machine learning (ML) can be helpful to accurately diagnose, improve outcome prediction, and identify disparities in the treatment of CLTI. We demonstrate the importance of AI/ML approaches for management of these patients and how available data could be used for computer-guided interventions. Although AI/ML applications to mitigate health care disparities in CLTI are in their infancy, we also highlighted specific AI/ML methods that show potential for addressing health care disparities in CLTI.

摘要

慢性肢体威胁性缺血(CLTI)是外周动脉疾病的最严重形式。CLTI 的预后极差,与主要截肢、心脏发病率、死亡率和生活质量差的风险相当。CLTI 的早期诊断和针对性治疗对于改善患者的预后至关重要。然而,由于患者之间现有的医疗保健差异,这一目标一直难以实现,而且耗时且具有挑战性。在本文中,我们回顾了人工智能(AI)和机器学习(ML)如何有助于准确诊断、改善预后预测以及识别 CLTI 治疗中的差异。我们展示了 AI/ML 方法对这些患者管理的重要性,以及如何使用现有数据进行计算机引导干预。尽管 AI/ML 应用于减轻 CLTI 中的医疗保健差异仍处于起步阶段,但我们也强调了显示出有潜力解决 CLTI 中医疗保健差异的特定 AI/ML 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验