Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa.
Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa.
World J Microbiol Biotechnol. 2023 Oct 21;39(12):350. doi: 10.1007/s11274-023-03764-4.
There is a need to profile microorganisms which exist pre-and-post-production of umqombothi, to understand its microbial diversity and the interactions which subsequently influence the final product. Thus, this study sought to determine the relative microbial abundance in umqombothi and predict the functional pathways of bacterial and fungal microbiota present. Full-length bacterial 16S rRNA and internal transcribed spacer (ITS) gene sequencing using PacBio single-molecule, real-time (SMRT) technology was used to assess the microbial compositions. PICRUSt2 was adopted to infer microbial functional differences. A mixture of harmful and beneficial microorganisms was observed in all samples. The microbial diversity differed significantly between the mixed raw ingredients (MRI), customary beer brew (CB), and optimised beer brew (OPB). The highest bacterial species diversity was observed in the MRI, while the highest fungal species diversity was observed in the OPB. The dominant bacterial species in the MRI, CB, and OPB were Kosakonia cowanii, Apilactobacillus pseudoficulneus, and Vibrio alginolyticus, respectively, while the dominant fungal species was Apiotrichum laibachii. The predicted functional annotations revealed significant (p < 0.05) differences in the microbial pathways of the fermented and unfermented samples. The most abundant pathways in the MRI were the branched-chain amino acid biosynthesis super pathway and the pentose phosphate pathway. The CB sample was characterised by folate (vitamin B) transformations III, and mixed acid fermentation. Biotin (vitamin B) biosynthesis I and L-valine biosynthesis characterised the OPB sample. These findings can assist in identifying potential starter cultures for the commercial production of umqombothi. Specifically, A. pseudoficulneus can be used for controlled fermentation during the production of umqombothi. Likewise, the use of A. laibachii can allow for better control over the fermentation kinetics such as carbohydrate conversion and end-product characteristics, especially esters and aroma compounds.
需要对 umqombothi 生产前后存在的微生物进行分析,以了解其微生物多样性以及随后影响最终产品的相互作用。因此,本研究旨在确定 umqombothi 中的相对微生物丰度,并预测存在的细菌和真菌微生物组的功能途径。使用 PacBio 单分子实时 (SMRT) 技术对全长细菌 16S rRNA 和内部转录间隔区 (ITS) 基因进行测序,以评估微生物组成。采用 PICRUSt2 推断微生物功能差异。在所有样品中均观察到有害和有益微生物的混合物。混合原料 (MRI)、传统啤酒酿造 (CB) 和优化啤酒酿造 (OPB) 之间的微生物多样性存在显著差异。MRI 中的细菌物种多样性最高,而 OPB 中的真菌物种多样性最高。MRI、CB 和 OPB 中的优势细菌物种分别为 Kosakonia cowanii、Apilactobacillus pseudoficulneus 和 Vibrio alginolyticus,而优势真菌物种为 Apiotrichum laibachii。预测的功能注释显示发酵和未发酵样品的微生物途径存在显著差异 (p < 0.05)。MRI 中最丰富的途径是支链氨基酸生物合成超级途径和戊糖磷酸途径。CB 样品的特征是叶酸 (维生素 B) 转化 III 和混合酸发酵。生物素 (维生素 B) 生物合成 I 和 L-缬氨酸生物合成是 OPB 样品的特征。这些发现可以帮助识别用于商业生产 umqombothi 的潜在起始培养物。具体来说,A. pseudoficulneus 可用于 umqombothi 生产过程中的控制发酵。同样,使用 A. laibachii 可以更好地控制发酵动力学,例如碳水化合物转化和最终产物特性,特别是酯类和香气化合物。