Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrative Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
Curr Biol. 2023 Nov 20;33(22):4917-4925.e4. doi: 10.1016/j.cub.2023.09.070. Epub 2023 Oct 20.
Animals influence how they disperse in the environment by sensing local cues and adapting how they move. However, controlling dispersal can present a particular challenge early in life when animals tend to be more limited in their capacities to sense and move. To what extent and by what mechanisms can newly hatched fish control how they disperse? Here, we reveal hatchling sensorimotor mechanisms for controlling dispersal by combining swim tracking and precise sensory manipulations of a model species, zebrafish. In controlled laboratory experiments, if we physically constrained hatchlings or blocked sensations of motion through vision and the lateral line, hatchlings responded by elevating their buoyancy and passively moving with faster surface currents. Complementarily, in stagnant water, hatchlings covered more ground using hyperstable swimming, strongly orienting based on graviception. Using experimentally calibrated hydrodynamic simulations, we show that these hatchling behaviors nearly tripled diffusivity and made dispersal robust to local conditions, suggesting this multisensory strategy may provide important advantages for early life in a variable environment.
动物通过感知局部线索并调整运动方式来影响它们在环境中的扩散方式。然而,在生命早期,当动物的感知和运动能力受到限制时,控制扩散可能会带来特殊的挑战。刚孵化的鱼类可以在多大程度上以及通过什么机制来控制它们的扩散方式?在这里,我们通过结合游泳跟踪和对模型物种斑马鱼的精确感觉操纵,揭示了孵化后控制扩散的感觉运动机制。在受控的实验室实验中,如果我们物理上限制孵化后的幼鱼或阻止它们通过视觉和侧线感知运动,那么幼鱼会通过提高浮力并被动地随快速的表面水流移动来做出反应。此外,在静止的水中,幼鱼使用超稳定的游泳方式覆盖了更多的地面,强烈地基于重感定向。通过使用经过实验校准的流体动力学模拟,我们表明这些幼鱼的行为将扩散率提高了近两倍,并使扩散对局部条件具有鲁棒性,这表明这种多感觉策略可能为多变环境中的早期生活提供重要优势。