Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA; Mulva Clinic for the Neurosciences, The University of Texas at Austin, 1601 Trinity St. Bldg A., Austin, USA.
Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA.
J Control Release. 2023 Dec;364:195-205. doi: 10.1016/j.jconrel.2023.10.024. Epub 2023 Oct 31.
Patients with glioblastoma (GBM) face a poor prognosis with a median survival of less than two years. Escalating the dose of chemotherapy is often impossible due to patient comorbidities; thus, we focused on modulating brain clearance as a mechanism to enhance drug accumulation. Given the recently identified interconnectivity between brain parenchymal fluid and cerebral spinal fluid (CSF), we reasoned enhancing drug concentration in the CSF also increases drug concentration in the parenchyma where a GBM resides. To improve drug accumulation in the CSF, we impair the motility of ependymal cell cilia. We identified FDA-approved therapeutics that interact with cilia as a "side effect." Therapeutics that inhibit airway cilia also inhibit ependymal cilia. Multiple cilia-inhibiting drugs, when administered in combination with GBM chemotherapy temozolomide (TMZ), significantly improved the overall survival of mice bearing orthotopic GBM. Combining TMZ with lidocaine results in 100% of animals surviving tumor-free to the study endpoint. This treatment results in a ~ 40-fold increase in brain TMZ levels and is well-tolerated. Mice bearing MGMT methylated, human PDX orthotopic GBM also responded with 100% of animals surviving tumor-free to the study endpoint. Finally, even mice bearing TMZ-resistant, orthotopic GBM responded to the combination treatment with 40% of animals surviving tumor-free to the study endpoint, implying this strategy can sensitize TMZ-resistant GBM. These studies offer a new concept for treating malignant brain tumors by improving the accumulation of TMZ in the CNS. In the future, this regimen may also improve the treatment of additional encephalopathies treated by brain-penetrating therapeutics. SIGNIFICANCE: We exploit the interconnectivity of parenchymal and cerebral spinal fluid to enhance the amount of temozolomide that accumulates in the central nervous system to improve the survival of mice bearing brain tumors.
胶质母细胞瘤(GBM)患者的预后较差,中位生存期不足两年。由于患者合并症,往往无法增加化疗剂量;因此,我们专注于调节脑清除率作为增强药物积累的机制。鉴于脑实质液和脑脊液(CSF)之间最近发现的连通性,我们推断增加 CSF 中的药物浓度也会增加 GBM 所在实质中的药物浓度。为了提高 CSF 中的药物积累,我们损害室管膜细胞纤毛的运动能力。我们确定了与纤毛相互作用的 FDA 批准的治疗药物作为“副作用”。抑制气道纤毛的治疗药物也抑制室管膜纤毛。当将多种纤毛抑制药物与 GBM 化疗替莫唑胺(TMZ)联合使用时,显著提高了携带原位 GBM 的小鼠的总生存率。将 TMZ 与利多卡因联合使用可使 100%的动物在研究终点时无肿瘤存活。这种治疗方法可使大脑 TMZ 水平提高约 40 倍,且耐受性良好。MGMT 甲基化、人类 PDX 原位 GBM 的小鼠也对无肿瘤存活的 100%动物做出反应,达到研究终点。最后,即使是携带 TMZ 耐药的原位 GBM 的小鼠,也对联合治疗有反应,40%的动物在研究终点时无肿瘤存活,这表明这种策略可以使 TMZ 耐药的 GBM 敏感化。这些研究为通过提高 TMZ 在中枢神经系统中的积累来治疗恶性脑肿瘤提供了一个新概念。在未来,这种方案也可能改善通过穿透大脑的治疗药物治疗的其他脑病的治疗效果。意义:我们利用实质和脑脊液之间的连通性来增强替莫唑胺在中枢神经系统中的积累量,以提高携带脑肿瘤的小鼠的生存率。