Suppr超能文献

开发和验证社区层面健康决定因素指数以用于治疗社区研究中的药物过量死亡。

Development and validation of a community-level social determinants of health index for drug overdose deaths in the HEALing Communities Study.

机构信息

Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, 85 East Newton Street Suite 906, Boston, MA, USA.

RTI International, 3040 East Cornwallis Road, PI Box 12194, Research Triangle Park, NC, USA.

出版信息

J Subst Use Addict Treat. 2024 Feb;157:209186. doi: 10.1016/j.josat.2023.209186. Epub 2023 Oct 20.

Abstract

INTRODUCTION

Social determinants of health (SDoH), such as socioeconomic status, education level, and food insecurity, are believed to influence the opioid crisis. While global SDoH indices such as the CDC's Social Vulnerability Index (SVI) and Area Deprivation Index (ADI) combine the explanatory power of multiple social factors for understanding health outcomes, they may be less applicable to the specific challenges of opioid misuse and associated outcomes. This study develops a novel index tailored to opioid misuse outcomes, tests the efficacy of this index in predicting drug overdose deaths across contexts, and compares the explanatory power of this index to other SDoH indices.

METHODS

Focusing on four HEALing Communities Study (HCS) states (Kentucky, Massachusetts, New York and Ohio; encompassing 4269 ZIP codes), we identified multilevel SDoH potentially associated with opioid misuse and aggregated publicly available data for each measure. We then leveraged a random forest model to develop a composite measure that predicts age-adjusted drug overdose mortality rates based on SDoH. We used this composite measure to understand HCS and non-HCS communities in terms of overdose risk across areas of varying racial composition. Finally, we compared variance in drug overdose deaths explained by this index to variance explained by the SVI and ADI.

RESULTS

Our composite measure included 28 SDoH measures and explained approximately 89 % percent of variance in age-adjusted drug overdose mortality across HCS states. Health care measures, including emergency department visits and primary care provider availability, were top predictors within the index. Index accuracy was robust within and outside of HCS communities and states. This measure identified high levels of overdose mortality risk in segregated communities.

CONCLUSIONS

Existing SDoH indices fail to explain much variation in area-level overdose mortality rates. Having tailored composite indices can help us to identify places in which residents are at highest risk based on their composite contexts. A comprehensive index can also help to develop effective community interventions for programs such as HCS by considering the context in which people live.

摘要

简介

社会决定因素(SDoH),如社会经济地位、教育水平和粮食不安全,被认为会影响阿片类药物危机。虽然全球 SDoH 指数,如疾病预防控制中心的社会脆弱性指数(SVI)和区域贫困指数(ADI),将多种社会因素的解释能力结合起来,以了解健康结果,但它们可能不太适用于阿片类药物滥用和相关结果的具体挑战。本研究开发了一种专门针对阿片类药物滥用结果的新指数,测试了该指数在预测不同背景下药物过量死亡方面的功效,并将该指数的解释能力与其他 SDoH 指数进行了比较。

方法

本研究专注于四个健康社区研究(HCS)州(肯塔基州、马萨诸塞州、纽约州和俄亥俄州;涵盖 4269 个邮政编码),确定了与阿片类药物滥用相关的多层次 SDoH,并汇总了每个措施的公开可用数据。然后,我们利用随机森林模型开发了一种综合指标,该指标根据 SDoH 预测年龄调整后的药物过量死亡率。我们使用该综合指标来了解 HCS 和非 HCS 社区在不同种族构成地区的过量风险。最后,我们比较了该指数解释药物过量死亡差异的程度与 SVI 和 ADI 解释的差异。

结果

我们的综合指标包括 28 个 SDoH 指标,解释了 HCS 州年龄调整后药物过量死亡率的约 89%的差异。医疗保健措施,包括急诊就诊和初级保健提供者的可及性,是该指数中的主要预测因素。该指数在 HCS 社区和州内和外都具有稳健的准确性。该指标在隔离社区中识别出了高水平的过量死亡风险。

结论

现有的 SDoH 指数无法解释地区一级药物过量死亡率的大部分差异。拥有量身定制的综合指数可以帮助我们根据居民的综合情况,确定处于最高风险的地方。综合指数还可以通过考虑人们生活的环境,帮助为 HCS 等项目制定有效的社区干预措施。

相似文献

本文引用的文献

8
Food insecurity, chronic pain, and use of prescription opioids.粮食不安全、慢性疼痛与处方阿片类药物的使用。
SSM Popul Health. 2021 Mar 9;14:100768. doi: 10.1016/j.ssmph.2021.100768. eCollection 2021 Jun.
10
A Critical Review of the Social and Behavioral Contributions to the Overdose Epidemic.对导致过量用药危机的社会和行为因素的批判性回顾。
Annu Rev Public Health. 2021 Apr 1;42:95-114. doi: 10.1146/annurev-publhealth-090419-102727. Epub 2021 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验