Department of Interdisciplinary Health Sciences, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA.
Department of Family Medicine, Augusta University, 987 St. Sebastian Way, Augusta, GA, 30912, USA.
BMC Public Health. 2022 Feb 4;22(1):236. doi: 10.1186/s12889-022-12653-8.
Death from cardiovascular disease (CVD) has been a longstanding public health challenge in the US, whereas death from opioid use is a recent, growing public health crisis. While population-level approaches to reducing CVD risk are known to be effective in preventing CVD deaths, more targeted approaches in high-risk communities are known to work better for reducing risk of opioid overdose. For communities to plan effectively in addressing both public health challenges, they need information on significant community-level (vs individual-level) predictors of death from CVD or opioid use. This study addresses this need by examining the relationship between 1) county-level social determinants of health (SDoH) and CVD deaths and 2) county-level SDoH and opioid-use deaths in the US, over a ten-year period (2009-2018).
A single national county-level ten-year 'SDoH Database' is analyzed, to address study objectives. Fixed-effects panel-data regression analysis, including county, year, and state-by-year fixed effects, is used to examine the relationship between 1) SDoH and CVD death-rate and 2) SDoH and opioid-use death-rate. Eighteen independent (SDoH) variables are included, spanning three contexts: socio-economic (e.g., race/ethnicity, income); healthcare (e.g., system-characteristics); and physical-infrastructure (e.g., housing).
After adjusting for county, year, and state-by-year fixed effects, the significant county-level positive SDoH predictors for CVD death rate were, median age and percentage of civilian population in armed forces. The only significant negative predictor was percentage of population reporting White race. On the other hand, the four significant negative predictors of opioid use death rate were median age, median household income, percent of population reporting Hispanic ethnicity and percentage of civilian population consisting of veterans. Notably, a dollar increase in median household income, was estimated to decrease sample mean opioid death rate by 0.0015% based on coefficient value, and by 20.05% based on effect size.
The study provides several practice and policy implications for addressing SDoH barriers at the county level, including population-based approaches to reduce CVD mortality risk among people in military service, and policy-based interventions to increase household income (e.g., by raising county minimum wage), to reduce mortality risk from opioid overdoses.
在美国,心血管疾病(CVD)导致的死亡一直是一个长期存在的公共卫生挑战,而阿片类药物使用导致的死亡则是一个新出现的、日益严重的公共卫生危机。虽然降低 CVD 风险的人群水平方法已被证明可有效预防 CVD 死亡,但在高危社区采取更有针对性的方法对降低阿片类药物过量风险效果更好。为了使社区能够有效地规划解决这两个公共卫生挑战,他们需要了解社区层面(而非个体层面)与 CVD 死亡或阿片类药物使用死亡相关的重要预测因素。本研究通过检查 1)县一级社会决定因素(SDoH)与 CVD 死亡之间的关系,以及 2)美国县一级 SDoH 与阿片类药物使用死亡之间的关系,来满足这一需求。本研究使用了单一的全国县一级十年 SDoH 数据库,采用固定效应面板数据回归分析,包括县、年和州-年固定效应,以检验 1)SDoH 与 CVD 死亡率之间的关系,以及 2)SDoH 与阿片类药物使用死亡率之间的关系。研究纳入了 18 个独立的(SDoH)变量,涵盖了三个方面:社会经济(如种族/民族、收入);医疗保健(如系统特征);和物理基础设施(如住房)。
在调整了县、年和州-年固定效应后,与 CVD 死亡率呈显著正相关的县一级 SDoH 预测因素有:年龄中位数和武装部队中平民人口的百分比。唯一显著的负向预测因素是报告白人种族的人口比例。另一方面,阿片类药物使用死亡率的四个显著负向预测因素为年龄中位数、家庭收入中位数、报告西班牙裔种族的人口比例和退伍军人组成的平民人口比例。值得注意的是,根据系数值,家庭收入中位数增加 1 美元,估计会使样本平均阿片类药物死亡人数减少 0.0015%,根据效应量计算,则减少 20.05%。
本研究为解决县一级的 SDoH 障碍提供了一些实践和政策方面的启示,包括针对军队中人群的以人群为基础的方法,以降低 CVD 死亡率风险,以及通过提高县最低工资等政策干预措施来增加家庭收入,以降低阿片类药物过量死亡率。