Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel.
Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States.
Hum Immunol. 2023 Dec;84(12):110721. doi: 10.1016/j.humimm.2023.110721. Epub 2023 Oct 21.
Allogeneic Hematopoietic Cell Transplantation (HCT) is a curative therapy for hematologic disorders and often requires human leukocyte antigen (HLA)-matched donors. Donor registries have recruited donors utilizing evolving technologies of HLA genotyping methods. This necessitates in-silico ambiguity resolution and statistical imputation based on haplotype frequencies estimated from donor data stratified by self-identified race and ethnicity (SIRE). However, SIRE has limited genetic validity and presents a challenge for individuals with unknown or mixed SIRE. We present MR-GRIMM "Multi-Race Graph IMputation and Matching" that simultaneously imputes the race/ethnic category and HLA genotype using a SIRE based prior. Additionally, we propose a novel method to impute HLA typing inconsistent with current haplotype frequencies. The performance of MR-GRIMM was validated using a dataset of 170,000 donor-recipient pairs. MR-GRIMM has an average 20 % lower matching error (1-AUC) than single-race imputation. The recall metric (sensitivity) of the race/ethnic category imputation from HLA was measured by comparing the imputed donor race with the donor-provided SIRE. Accuracies of 0.74 and 0.55 were obtained for the prediction of 5 broad and 21 detailed US population groups respectively. The operational implementation of this algorithm in a registry search could help improve match predictions and access to HLA-matched donors.
异基因造血细胞移植(HCT)是治疗血液系统疾病的一种有治愈可能的疗法,通常需要人类白细胞抗原(HLA)匹配的供体。供体登记处利用 HLA 基因分型方法的不断发展的技术招募供体。这需要基于从按自我认定的种族和民族分层的供体数据估计的单倍型频率进行计算机模拟歧义解决和统计推断(SIRE)。然而,SIRE 的遗传有效性有限,并且对自我认定的种族和民族未知或混合的个体提出了挑战。我们提出了 MR-GRIMM“多种族图推断和匹配”,它使用基于 SIRE 的先验同时推断种族/民族类别和 HLA 基因型。此外,我们提出了一种新颖的方法来推断与当前单倍型频率不一致的 HLA 分型。使用 170000 对供体-受者对数据集验证了 MR-GRIMM 的性能。MR-GRIMM 的平均匹配错误(1-AUC)比单种族推断低 20%。通过比较推断出的供体种族与供体提供的 SIRE,来衡量 HLA 推断出的种族/民族类别的召回率(敏感性)。分别获得了 0.74 和 0.55 的准确度,用于预测 5 个广泛的和 21 个详细的美国人群组。该算法在登记处搜索中的实际实施可以帮助改善匹配预测并获得 HLA 匹配的供体。