Suppr超能文献

基于图的插补方法及其在单供体和家庭中的应用。

Graph-Based Imputation Methods and Their Applications to Single Donors and Families.

机构信息

Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel.

Center for International Blood and Marrow Transplant Research (CIBMTR), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA.

出版信息

Methods Mol Biol. 2024;2809:193-214. doi: 10.1007/978-1-0716-3874-3_13.

Abstract

The outcome of Hematopoietic Stem Cell (HSCT) and organ transplant is strongly affected by the matching of the HLA alleles of the donor and the recipient. However, donors and sometimes recipients are often typed at low resolution, with some alleles either missing or ambiguous. Thus, imputation methods are required to detect the most probably high-resolution HLA haplotypes consistent with a typing. Such imputation algorithms require predefined haplotype frequencies. As such, the phasing of the typing is required for both imputation and frequency generation.We have developed a new approach to HLA haplotype and genotype imputation, where first all candidate phases of a typing are explicated, and then the ambiguity within each phase is solved. This ambiguity is solved through a graph structure of all partial haplotypes and the haplotypes consistent with them.This phasing approach was used to produce an imputation algorithm (GRIMM-Graph Imputation and Matching). GRIMM was then combined with the possibility of combining information from multiple races to produce MR-GRIMM (Multi-Race GRIMM). When family information is available, the phasing of each family member can be restricted by the others. We propose GRAMM (GRaph-bAsed faMily iMputation) to phase alleles in family pedigree HLA typing data and in mother-cord blood unit pairs. Finally, we combined MR-GRIMM with an expectation-maximization (EM) algorithm to estimate haplotype frequencies sharing information between races to produce MR-GRIMME (MR-GRIMM EM).We have shown that these algorithms naturally combine information between races and family members. The accuracy of each of these algorithms is significantly better than its current parallel methods. MR-GRIMM leads to high accuracy in matching predictions. GRAMM better imputes family members than either MR-GRIMM or any existing algorithm and has practically no phasing errors. MR-GRIMME obtains a higher likelihood than existing algorithms.MR-GRIMM, MR-GRIMME, and GRAMM are available as servers or through stand-alone versions in GITHUB and PyPi, as detailed in the appropriate sections.

摘要

造血干细胞(HSCT)和器官移植的结果受供体和受者 HLA 等位基因匹配的强烈影响。然而,供体和有时受者的分型分辨率往往较低,一些等位基因缺失或不明确。因此,需要使用推断方法来检测与分型最匹配的最可能的高分辨率 HLA 单倍型。这种推断算法需要预定义的单倍型频率。因此,在推断和频率生成时都需要对分型进行相位检测。

我们开发了一种新的 HLA 单倍型和基因型推断方法,首先阐明了分型的所有候选相位,然后解决了每个相位中的模糊性。通过所有部分单倍型和与之一致的单倍型的图结构来解决这种模糊性。

这种相位方法用于产生一种推断算法(GRIMM-图形推断和匹配)。然后,将 GRIMM 与结合来自多个种族的信息的可能性结合起来,生成 MR-GRIMM(多种族 GRIMM)。当有家族信息时,可以通过其他成员来限制每个家族成员的相位。我们提出了 GRAMM(基于图的家族推断)来推断家族系谱 HLA 分型数据和母子脐带血单位对中的等位基因相位。最后,我们将 MR-GRIMM 与期望最大化(EM)算法结合,以估计在种族之间共享信息的单倍型频率,从而产生 MR-GRIMME(MR-GRIMM EM)。

我们已经表明,这些算法自然地结合了种族和家族成员之间的信息。这些算法中的每一个的准确性都明显优于其当前的并行方法。MR-GRIMM 导致匹配预测的高精度。与任何现有算法相比,GRAMM 更好地推断家族成员,并且实际上没有相位错误。MR-GRIMME 获得的可能性高于现有算法。

MR-GRIMM、MR-GRIMME 和 GRAMM 可作为服务器或通过 GITHUB 和 PyPi 中的独立版本获得,详情请参见相应部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验