Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
Department of Urology and Pelvic surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
Adv Sci (Weinh). 2023 Nov;10(33):e2303369. doi: 10.1002/advs.202303369. Epub 2023 Oct 22.
Mechanical cues play a crucial role in activating myofibroblasts from quiescent fibroblasts during fibrosis, and the stiffness of the extracellular matrix is of significant importance in this process. While intracellular force mediated by myosin II and calcium influx regulated by Piezo1 are the primary mechanisms by which cells sense and respond to mechanical forces, their intercellular mechanical interaction remains to be elucidated. Here, hydrogels with tunable substrate are used to systematically investigate the crosstalk of myosin II and Piezo1 in fibroblast to myofibroblast transition (FMT). The findings reveal that the two distinct signaling pathways are integrated to convert mechanical stiffness signals into biochemical signals during bladder-specific FMT. Moreover, it is demonstrated that the crosstalk between myosin II and Piezo1 sensing mechanisms synergistically establishes a sustained feed-forward loop that contributes to chromatin remodeling, induces the expression of downstream target genes, and ultimately exacerbates FMT, in which the intracellular force activates Piezo1 by PI3K/PIP3 pathway-mediated membrane tension and the Piezo1-regulated calcium influx enhances intracellular force by the classical FAK/RhoA/ROCK pathway. Finally, the multifunctional Piezo1 in the complex feedback circuit of FMT drives to further identify that targeting Piezo1 as a therapeutic option for ameliorating bladder fibrosis and dysfunction.
机械线索在纤维化过程中从静止的成纤维细胞中激活肌成纤维细胞方面起着至关重要的作用,细胞外基质的硬度在这个过程中非常重要。虽然肌球蛋白 II 介导的细胞内力和 Piezo1 调节的钙内流是细胞感知和响应机械力的主要机制,但它们的细胞间机械相互作用仍有待阐明。在这里,使用具有可调基底的水凝胶来系统地研究肌球蛋白 II 和 Piezo1 在成纤维细胞向肌成纤维细胞转化(FMT)中的细胞间相互作用。研究结果表明,在膀胱特异性 FMT 过程中,这两个不同的信号通路被整合,将机械刚度信号转化为生化信号。此外,还表明肌球蛋白 II 和 Piezo1 传感机制之间的串扰协同建立了一个持续的正反馈回路,有助于染色质重塑,诱导下游靶基因的表达,并最终加剧 FMT,其中细胞内力通过 PI3K/PIP3 途径介导的膜张力激活 Piezo1,而 Piezo1 调节的钙内流通过经典的 FAK/RhoA/ROCK 途径增强细胞内力。最后,在 FMT 的复杂反馈回路中多功能的 Piezo1 进一步表明,将 Piezo1 作为一种治疗选择用于改善膀胱纤维化和功能障碍是可行的。