Suppr超能文献

临床试验中的决策制定:期中分析、创新设计与生物标志物。

Decision making in clinical trials: Interim analyses, innovative design, and biomarkers.

作者信息

Welsh-Bohmer Kathleen A, Kerchner Geoffrey A, Dhadda Shobha, Garcia Miguel, Miller David S, Natanegara Fanni, Raket Lars Lau, Robieson Weining, Siemers Eric R, Carrillo Maria C, Weber Christopher J

机构信息

Department of Psychiatry & Neurology Duke University Durham North Carolina USA.

Pharma Research and Early Development F. Hoffmann-La Roche, Ltd Basel Switzerland.

出版信息

Alzheimers Dement (N Y). 2023 Oct 18;9(4):e12421. doi: 10.1002/trc2.12421. eCollection 2023 Oct-Dec.

Abstract

The efficient and accurate execution of clinical trials testing novel treatments for Alzheimer's disease (AD) is a critical component of the field's collective efforts to develop effective disease-modifying treatments for AD. The lengthy and heterogeneous nature of clinical progression in AD contributes to the challenges inherent in demonstrating a clinically meaningful benefit of any potential new AD therapy. The failure of many large and expensive clinical trials to date has prompted a focus on optimizing all aspects of decision making, to not only expedite the development of new treatments, but also maximize the value of the information that each clinical trial yields, so that all future clinical trials (including those that are negative) will contribute toward advancing the field. To address this important topic the Alzheimer's Association Research Roundtable convened December 1-2, 2020. The goals focused around identifying new directions and actionable steps to enhance clinical trial decision making in planned future studies.

摘要

对阿尔茨海默病(AD)新型治疗方法进行高效且准确的临床试验,是该领域为开发有效的疾病修饰治疗方法而共同努力的关键组成部分。AD临床进展的漫长且异质性特点,给证明任何潜在新AD疗法具有临床意义的益处带来了固有挑战。迄今为止,许多大型且昂贵的临床试验均告失败,这促使人们专注于优化决策的各个方面,不仅要加快新疗法的研发,还要使每项临床试验所产生信息的价值最大化,以便所有未来的临床试验(包括那些结果为阴性的试验)都能推动该领域的发展。为探讨这一重要话题,阿尔茨海默病协会研究圆桌会议于2020年12月1日至2日召开。会议目标聚焦于确定新方向和可采取的行动步骤,以加强未来计划研究中的临床试验决策。

相似文献

1
Decision making in clinical trials: Interim analyses, innovative design, and biomarkers.
Alzheimers Dement (N Y). 2023 Oct 18;9(4):e12421. doi: 10.1002/trc2.12421. eCollection 2023 Oct-Dec.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease.
Alzheimers Dement. 2018 Apr;14(4):535-562. doi: 10.1016/j.jalz.2018.02.018.
6
Expectations and clinical meaningfulness of randomized controlled trials.
Alzheimers Dement. 2023 Jun;19(6):2730-2736. doi: 10.1002/alz.12959. Epub 2023 Feb 7.
7
Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials.
Lancet Neurol. 2022 Aug;21(8):726-734. doi: 10.1016/S1474-4422(22)00168-5. Epub 2022 May 25.
10

本文引用的文献

1
2
Putting participants and study partners FIRST when clinical trials end early.
Alzheimers Dement. 2022 Dec;18(12):2736-2746. doi: 10.1002/alz.12732. Epub 2022 Aug 2.
3
Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer's Disease.
J Prev Alzheimers Dis. 2022;9(2):197-210. doi: 10.14283/jpad.2022.30.
4
Mobile health and neurocognitive domains evaluation through smartphones: A meta-analysis.
Comput Methods Programs Biomed. 2021 Nov;212:106484. doi: 10.1016/j.cmpb.2021.106484. Epub 2021 Oct 22.
6
Current advances in digital cognitive assessment for preclinical Alzheimer's disease.
Alzheimers Dement (Amst). 2021 Jul 20;13(1):e12217. doi: 10.1002/dad2.12217. eCollection 2021.
7
The Evolution of Neurofilament Light Chain in Multiple Sclerosis.
Front Neurosci. 2021 Apr 6;15:642384. doi: 10.3389/fnins.2021.642384. eCollection 2021.
8
Application of the ATN classification scheme in a population without dementia: Findings from the EPAD cohort.
Alzheimers Dement. 2021 Jul;17(7):1189-1204. doi: 10.1002/alz.12292. Epub 2021 Apr 3.
9
Donanemab in Early Alzheimer's Disease.
N Engl J Med. 2021 May 6;384(18):1691-1704. doi: 10.1056/NEJMoa2100708. Epub 2021 Mar 13.
10
Statistical Disease Progression Modeling in Alzheimer Disease.
Front Big Data. 2020 Aug 12;3:24. doi: 10.3389/fdata.2020.00024. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验