Suppr超能文献

大麻素受体2信号促进肺部2型免疫。

Cannabinoid receptor 2 signal promotes type 2 immunity in the lung.

作者信息

Liu Tingting, Liu Jiaqi, Chen Hongjie, Zhou Xin, Fu Wei, Cao Ying, Yang Jing

机构信息

Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.

State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.

出版信息

Cell Insight. 2023 Oct 6;2(5):100124. doi: 10.1016/j.cellin.2023.100124. eCollection 2023 Oct.

Abstract

Type 2 immunity in the lung protects against pathogenic infection and facilitates tissue repair, but its dysregulation may lead to severe human diseases. Notably, cannabis usage for medical or recreational purposes has increased globally. However, the potential impact of the cannabinoid signal on lung immunity is incompletely understood. Here, we report that cannabinoid receptor 2 (CB2) is highly expressed in group 2 innate lymphoid cells (ILC2s) of mouse and human lung tissues. Of importance, the CB2 signal enhances the IL-33-elicited immune response of ILC2s. In addition, the chemogenetic manipulation of inhibitory G proteins (Gi) downstream of CB2 produces a similarly promotive effect. Conversely, the genetic deletion of CB2 mitigates the IL-33-elicited type 2 immunity in the lung. Also, such ablation of the CB2 signal ameliorates papain-induced tissue inflammation. Together, these results have elucidated a critical aspect of the CB2 signal in lung immunity, implicating its potential involvement in pulmonary diseases.

摘要

肺部的2型免疫可抵御病原体感染并促进组织修复,但其失调可能导致严重的人类疾病。值得注意的是,用于医疗或娱乐目的的大麻使用在全球范围内有所增加。然而,大麻素信号对肺部免疫的潜在影响尚未完全了解。在此,我们报告大麻素受体2(CB2)在小鼠和人类肺组织的2型固有淋巴细胞(ILC2s)中高度表达。重要的是,CB2信号增强了IL-33引发的ILC2s免疫反应。此外,对CB2下游的抑制性G蛋白(Gi)进行化学遗传学操作也产生了类似的促进作用。相反,CB2的基因缺失减轻了IL-33引发的肺部2型免疫。而且,CB2信号的这种缺失改善了木瓜蛋白酶诱导的组织炎症。总之,这些结果阐明了CB2信号在肺部免疫中的一个关键方面,暗示其可能参与肺部疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9743/10585230/bb5df326c6a6/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验