Suppr超能文献

利用光电容积脉搏波描记图和心电图的群体支持向量机进行无袖带高血压检测。

Cuffless Hypertension Detection using Swarm Support Vector Machine Utilizing Photoplethysmogram and Electrocardiogram.

作者信息

Nuryani Nuryani, Pambudi Utomo Trio, Wiyono Nanang, Sutomo Artono Dwijo, Ling Steve

机构信息

Department of Physics, University of Sebelas Maret Jl. Ir. Sutami 36A Kentingan Jebres Surakarta 57126, Indonesia.

Faculty of Medicine, University of Sebelas Maret Jl. Ir. Sutami 36A Kentingan Jebres Surakarta 57126, Indonesia.

出版信息

J Biomed Phys Eng. 2023 Oct 1;13(5):477-488. doi: 10.31661/jbpe.v0i0.2206-1504. eCollection 2023 Oct.

Abstract

BACKGROUND

Hypertension is associated with severe complications, and its detection is important to provide early information about a hypertension event, which is essential to prevent further complications.

OBJECTIVE

This study aimed to investigate a strategy for hypertension detection without a cuff using parameters of bioelectric signals, i.e., Electrocardiogram (ECG), Photoplethysmogram (PPG,) and an algorithm of Swarm-based Support Vector Machine (SSVM).

MATERIAL AND METHODS

This experimental study was conducted to develop a hypertension detection system. ECG and PPG bioelectrical records were collected from the Medical Information Mart for Intensive Care (MIMIC) from normal and hypertension participants and processed to find the parameters, used for the inputs of SSVM and comprised Pulse Arrival Time (PAT) and the characteristics of PPG signal derivatives. The SSVM was n Support Vector Machine (SVM) algorithm optimized using particle swarm optimization with Quantum Delta-potential-well (QDPSO). The SSVMs with different inputs were investigated to find the optimal detection performance.

RESULTS

The proposed strategy was performed at 96% in terms of F1-score, accuracy, sensitivity, and specificity with better performance than the other methods tested and methods and also could develop a cuff-free hypertension monitoring system.

CONCLUSION

Hypertension using SSVM, ECG, and PPG parameters is acceptably performed. The hypertension detection had lower performance utilizing only PPG than both ECG and PPG.

摘要

背景

高血压与严重并发症相关,其检测对于提供高血压事件的早期信息很重要,这对于预防进一步的并发症至关重要。

目的

本研究旨在探讨一种不使用袖带,而是利用生物电信号参数(即心电图(ECG)、光电容积脉搏波图(PPG))以及基于群体的支持向量机(SSVM)算法进行高血压检测的策略。

材料与方法

进行本实验研究以开发一种高血压检测系统。从正常和高血压参与者的重症监护医学信息数据库(MIMIC)中收集ECG和PPG生物电记录,并进行处理以找到用于SSVM输入的参数,这些参数包括脉搏波传导时间(PAT)和PPG信号导数的特征。SSVM是一种使用量子Delta势阱粒子群优化(QDPSO)优化的支持向量机(SVM)算法。研究了具有不同输入的SSVM,以找到最佳检测性能。

结果

所提出的策略在F1分数、准确率、灵敏度和特异性方面达到了96%的性能,比其他测试方法表现更好,并且还可以开发一种无袖带高血压监测系统。

结论

使用SSVM、ECG和PPG参数进行高血压检测表现良好。仅利用PPG进行高血压检测的性能低于同时利用ECG和PPG的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14a2/10589690/4908d7683c3e/JBPE-13-477-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验