Suppr超能文献

果蝇 tweety 通过促进自噬来调节神经胶质细胞中线粒体的动态平衡和生物能量学。

Drosophila tweety facilitates autophagy to regulate mitochondrial homeostasis and bioenergetics in Glia.

机构信息

Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA.

Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, Texas, USA.

出版信息

Glia. 2024 Feb;72(2):433-451. doi: 10.1002/glia.24484. Epub 2023 Oct 23.

Abstract

Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.

摘要

线粒体为细胞的能量需求提供支持。线粒体的自噬性降解是维持线粒体稳态的关键途径。目前尚不清楚生物能量学和自噬是如何在功能上联系起来的。在这里,我们发现了一种内体膜蛋白,它可以促进自噬,从而调节胶质细胞中的 ATP 产生。我们确定果蝇 tweety(tty)在胶质细胞中高度表达,并定位于内体溶酶体。在 tty 缺陷型胶质细胞中,自噬体与内体溶酶体之间的融合减少,可以通过表达人类 Tweety Homolog 1(TTYH1)得到挽救。胶质细胞中 tty 的缺失减弱了线粒体的周转率,增加了线粒体的氧化应激,并损害了运动功能。抗氧化剂处理部分逆转了细胞和机体的缺陷。我们对遗传编码代谢物传感器进行了活细胞成像,以确定 tty 和自噬缺陷对胶质细胞生物能量学的影响。我们发现,tty 缺陷型胶质细胞表现出减少的线粒体丙酮酸消耗,同时转向糖酵解以产生 ATP。同样,在胶质细胞中遗传抑制自噬也导致生物能量学中出现类似的糖酵解转变。此外,突变体果蝇的存活率对饥饿变得更加敏感,这突显了 tty 在自噬和生物能量学之间相互作用中的重要性。总之,我们的研究结果揭示了 tty 通过促进自噬在维持线粒体稳态中的作用,这决定了胶质细胞中的生物能量平衡。

相似文献

8
ATP13A2 regulates mitochondrial bioenergetics through macroautophagy.ATP13A2 通过巨自噬调节线粒体生物能学。
Neurobiol Dis. 2012 Mar;45(3):962-72. doi: 10.1016/j.nbd.2011.12.015. Epub 2011 Dec 13.
9
Glial Draper Rescues Aβ Toxicity in a Model of Alzheimer's Disease.胶质细胞的Draper蛋白在阿尔茨海默病模型中挽救Aβ毒性。
J Neurosci. 2017 Dec 6;37(49):11881-11893. doi: 10.1523/JNEUROSCI.0862-17.2017. Epub 2017 Nov 6.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验