Rodrigues Carlos H M, Ascher David B
Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.
Proteins. 2025 Jan;93(1):209-216. doi: 10.1002/prot.26615. Epub 2023 Oct 23.
Proteins are molecular machinery that participate in virtually all essential biological functions within the cell, which are tightly related to their 3D structure. The importance of understanding protein structure-function relationship is highlighted by the exponential growth of experimental structures, which has been greatly expanded by recent breakthroughs in protein structure prediction, most notably RosettaFold, and AlphaFold2. These advances have prompted the development of several computational approaches that leverage these data sources to explore potential biological interactions. However, most methods are generally limited to analysis of single types of interactions, such as protein-protein or protein-ligand interactions, and their complexity limits the usability to expert users. Here we report CSM-Potential2, a deep learning platform for the analysis of binding interfaces on protein structures. In addition to prediction of protein-protein interactions binding sites and classification of biological ligands, our new platform incorporates prediction of interactions with nucleic acids at the residue level and allows for ligand transplantation based on sequence and structure similarity to experimentally determined structures. We anticipate our platform to be a valuable resource that provides easy access to a range of state-of-the-art methods to expert and non-expert users for the study of biological interactions. Our tool is freely available as an easy-to-use web server and API available at https://biosig.lab.uq.edu.au/csm_potential.
蛋白质是参与细胞内几乎所有基本生物学功能的分子机器,这些功能与其三维结构密切相关。实验结构的指数增长凸显了理解蛋白质结构-功能关系的重要性,蛋白质结构预测方面的最新突破,尤其是RosettaFold和AlphaFold2,极大地扩展了实验结构。这些进展促使了几种计算方法的发展,这些方法利用这些数据源来探索潜在的生物相互作用。然而,大多数方法通常仅限于分析单一类型的相互作用,如蛋白质-蛋白质或蛋白质-配体相互作用,其复杂性限制了普通用户的使用。在此,我们报告了CSM-Potential2,这是一个用于分析蛋白质结构上结合界面的深度学习平台。除了预测蛋白质-蛋白质相互作用的结合位点和对生物配体进行分类外,我们的新平台还在残基水平纳入了与核酸相互作用的预测,并允许基于与实验确定结构的序列和结构相似性进行配体移植。我们预计我们的平台将成为一种有价值的资源,为专业和非专业用户提供一系列易于使用的前沿方法,用于研究生物相互作用。我们的工具可作为一个易于使用的网络服务器免费获取,其API可在https://biosig.lab.uq.edu.au/csm_potential上获得。