Suppr超能文献

重塑视野:针对具有大值域的时间序列数据的新型可视化设计

Reclaiming the Horizon: Novel Visualization Designs for Time-Series Data with Large Value Ranges.

作者信息

Braun Daniel, Borgo Rita, Sondag Max, von Landesberger Tatiana

出版信息

IEEE Trans Vis Comput Graph. 2024 Jan;30(1):1161-1171. doi: 10.1109/TVCG.2023.3326576. Epub 2023 Dec 25.

Abstract

We introduce two novel visualization designs to support practitioners in performing identification and discrimination tasks on large value ranges (i.e., several orders of magnitude) in time-series data: (1) The order of magnitude horizon graph, which extends the classic horizon graph; and (2) the order of magnitude line chart, which adapts the log-line chart. These new visualization designs visualize large value ranges by explicitly splitting the mantissa m and exponent e of a value v=m·10. We evaluate our novel designs against the most relevant state-of-the-art visualizations in an empirical user study. It focuses on four main tasks commonly employed in the analysis of time-series and large value ranges visualization: identification, discrimination, estimation, and trend detection. For each task we analyze error, confidence, and response time. The new order of magnitude horizon graph performs better or equal to all other designs in identification, discrimination, and estimation tasks. Only for trend detection tasks, the more traditional horizon graphs reported better performance. Our results are domain-independent, only requiring time-series data with large value ranges.

摘要

我们引入了两种新颖的可视化设计,以支持从业者对时间序列数据中的大数值范围(即几个数量级)执行识别和区分任务:(1)数量级水平图,它扩展了经典的水平图;(2)数量级折线图,它改编自对数折线图。这些新的可视化设计通过明确拆分值v = m·10的尾数m和指数e来可视化大数值范围。我们在一项实证用户研究中,将我们的新颖设计与最相关的现有可视化进行了评估。它专注于时间序列分析和大数值范围可视化中常用的四个主要任务:识别、区分、估计和趋势检测。对于每个任务,我们分析了误差、置信度和响应时间。新的数量级水平图在识别、区分和估计任务中的表现优于或等同于所有其他设计。仅在趋势检测任务中,更传统的水平图表现出更好的性能。我们的结果与领域无关,只需要具有大数值范围的时间序列数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验