Suppr超能文献

比较时间序列可视化中的相似性感知

Comparing Similarity Perception in Time Series Visualizations.

作者信息

Gogolou Anna, Tsandilas Theophanis, Palpanas Themis, Bezerianos Anastasia

出版信息

IEEE Trans Vis Comput Graph. 2018 Aug 20. doi: 10.1109/TVCG.2018.2865077.

Abstract

A common challenge faced by many domain experts working with time series data is how to identify and compare similar patterns. This operation is fundamental in high-level tasks, such as detecting recurring phenomena or creating clusters of similar temporal sequences. While automatic measures exist to compute time series similarity, human intervention is often required to visually inspect these automatically generated results. The visualization literature has examined similarity perception and its relation to automatic similarity measures for line charts, but has not yet considered if alternative visual representations, such as horizon graphs and colorfields, alter this perception. Motivated by how neuroscientists evaluate epileptiform patterns, we conducted two experiments that study how these three visualization techniques affect similarity perception in EEG signals. We seek to understand if the time series results returned from automatic similarity measures are perceived in a similar manner, irrespective of the visualization technique; and if what people perceive as similar with each visualization aligns with different automatic measures and their similarity constraints. Our findings indicate that horizon graphs align with similarity measures that allow local variations in temporal position or speed (i.e., dynamic time warping) more than the two other techniques. On the other hand, horizon graphs do not align with measures that are insensitive to amplitude and y-offset scaling (i.e., measures based on z-normalization), but the inverse seems to be the case for line charts and colorfields. Overall, our work indicates that the choice of visualization affects what temporal patterns we consider as similar, i.e., the notion of similarity in time series is not visualization independent.

摘要

许多处理时间序列数据的领域专家面临的一个常见挑战是如何识别和比较相似模式。此操作在诸如检测反复出现的现象或创建相似时间序列的聚类等高阶任务中至关重要。虽然存在用于计算时间序列相似度的自动方法,但通常仍需要人工干预来直观检查这些自动生成的结果。可视化文献已经研究了折线图的相似度感知及其与自动相似度度量的关系,但尚未考虑诸如水平图和色场等其他视觉表示形式是否会改变这种感知。受神经科学家评估癫痫样模式方式的启发,我们进行了两项实验,研究这三种可视化技术如何影响脑电图(EEG)信号中的相似度感知。我们试图了解,无论可视化技术如何,自动相似度度量返回的时间序列结果是否以相似的方式被感知;以及人们通过每种可视化所感知到的相似之处是否与不同的自动度量及其相似度约束相一致。我们的研究结果表明,与其他两种技术相比,水平图与允许时间位置或速度存在局部变化的相似度度量(即动态时间规整)更相符。另一方面,水平图与对幅度和y轴偏移缩放不敏感的度量(即基于z标准化的度量)不相符,但折线图和色场的情况似乎相反。总体而言,我们的工作表明,可视化的选择会影响我们认为相似的时间模式,即时间序列中的相似度概念并非与可视化无关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验