Wang Denan, Ostresh Sarah, Streater Daniel, He Peilei, Nyakuchena James, Ma Qiushi, Zhang Xiaoyi, Neu Jens, Brudvig Gary W, Huang Jier
Department of Chemistry, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA 02467, USA.
Department of Chemistry and Yale Energy Science Institute, Yale University, New Haven, CT 06520-8107, USA.
Angew Chem Int Ed Engl. 2023 Dec 11;62(50):e202309505. doi: 10.1002/anie.202309505. Epub 2023 Nov 9.
Metal-organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M-HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time-resolved terahertz spectroscopy, optical transient absorption spectroscopy, X-ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through-space hole transport mechanism through the interlayer sheet π-π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu-HHTP MOF is found to be 65.5 S m , which represents the record high photoconductivity for porous MOF materials based on catecholate ligands.
具有可移动电荷的金属有机框架(MOF)因其在光电器件、耐化学性传感器和催化领域的潜在应用而备受关注。然而,对于框架内电荷传输途径以及决定光电器件中导电MOF性能的关键特性的基本理解仍有待深入探索。在此,我们结合时间分辨太赫兹光谱、光学瞬态吸收光谱、X射线瞬态吸收光谱和密度泛函理论(DFT)计算,报告了导电二维M - HHTP(M = Cu、Zn或Cu/Zn混合;HHTP = 2,3,6,7,10,11 - 六羟基三亚苯)MOF中的光致电荷传输机制和电子动力学及其与光电导率的相关性。我们通过层间片层π - π相互作用确定了空间孔传输机制,其中光致空穴态存在于HHTP配体中,电子态定域在金属中心。此外,发现Cu - HHTP MOF的光电导率为65.5 S m ,这代表了基于儿茶酚配体的多孔MOF材料的创纪录高光电导率。