Suppr超能文献

RNA测序与机器学习相结合鉴定出恩格列净对射血分数降低的有益心力衰竭的关键基因。

Integration of RNA-Seq and Machine Learning Identifies Hub Genes for Empagliflozin Benefitable Heart Failure with Reduced Ejection Fraction.

作者信息

Yang Qiang, Gao Jing, Wang Tian-Yu, Ding Jun-Can, Hu Peng-Fei

机构信息

Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People's Republic of China.

Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, Zhejiang Province, 310018, People's Republic of China.

出版信息

J Inflamm Res. 2023 Oct 18;16:4733-4749. doi: 10.2147/JIR.S429096. eCollection 2023.

Abstract

PURPOSE

This study aimed to analyze the hub genes of heart failure with reduced ejection fraction (HFrEF) treated with Empagliflozin using RNA sequencing (RNA-seq) and bioinformatics methods, including machine learning.

METHODS

From February 2021 to February 2023, nine patients with HFrEF were enrolled from our hospital's cardiovascular department. In addition to routine drug treatment, these patients received 10 mg of Empagliflozin once daily for two months. Efficacy was assessed and RNA-seq was performed on peripheral blood before and after treatment with empagliflozin. HFrEF-related hub genes were identified through bioinformatics analyses including differential gene expression analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, immune infiltration analysis, machine learning, immune cell correlation analysis and clinical indicator correlation analysis.

RESULTS

The nine patients included in this study completed a two-month treatment regimen, with an average age of 62.11 ± 6.36 years. By performing bioinformatics analysis on the transcriptome from the treatment groups, 42 differentially expressed genes were identified, with six being up-regulated and 36 being down-regulated (|log2FC|>1 and adj.pvalue<0.05). Immune infiltration analysis of these genes demonstrated a significant difference in the proportion of plasma between the pre-treatment and post-treatment groups (<0.05). Two hub genes, GTF2IP14 and MTLN, were finally identified through machine learning. Further analysis of the correlation between the hub genes and immune cells suggested a negative correlation between GTF2IP14 and naive B cells, and a positive correlation between MTLN and regulatory T cells and resting memory CD4+ T cells (<0.05).

CONCLUSION

Through RNA-seq and bioinformatics analysis, this study identified GTF2IP14 and MTLN as the hub genes of HFrEF, and their mechanisms may be related to immune inflammatory responses and various immune cells.

摘要

目的

本研究旨在运用RNA测序(RNA-seq)和生物信息学方法,包括机器学习,分析恩格列净治疗射血分数降低的心力衰竭(HFrEF)的关键基因。

方法

2021年2月至2023年2月,从我院心血管科招募了9例HFrEF患者。除常规药物治疗外,这些患者每天服用10mg恩格列净,持续两个月。评估疗效,并在恩格列净治疗前后对外周血进行RNA-seq。通过生物信息学分析,包括差异基因表达分析、基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析、免疫浸润分析、机器学习、免疫细胞相关性分析和临床指标相关性分析,确定HFrEF相关的关键基因。

结果

本研究纳入的9例患者完成了为期两个月的治疗方案,平均年龄为62.11±6.36岁。通过对治疗组转录组进行生物信息学分析,鉴定出42个差异表达基因,其中6个上调,36个下调(|log2FC|>1且adj.pvalue<0.05)。对这些基因的免疫浸润分析表明,治疗前和治疗后组间血浆比例存在显著差异(<0.05)。最终通过机器学习确定了两个关键基因,即GTF2IP14和MTLN。对关键基因与免疫细胞之间相关性的进一步分析表明,GTF2IP14与幼稚B细胞呈负相关,MTLN与调节性T细胞和静息记忆CD4+T细胞呈正相关(<0.05)。

结论

通过RNA-seq和生物信息学分析,本研究确定GTF2IP14和MTLN为HFrEF的关键基因,其机制可能与免疫炎症反应和各种免疫细胞有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c4b/10590560/e5ffa2268301/JIR-16-4733-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验