Suppr超能文献

用有向无环图表示和扩展简约进化历史的集合。

Representing and extending ensembles of parsimonious evolutionary histories with a directed acyclic graph.

作者信息

Dumm Will, Barker Mary, Howard-Snyder William, DeWitt William S, Iv Frederick A Matsen

出版信息

ArXiv. 2023 Oct 11:arXiv:2310.07919v1.

Abstract

In many situations, it would be useful to know not just the best phylogenetic tree for a given data set, but the collection of high-quality trees. This goal is typically addressed using Bayesian techniques, however, current Bayesian methods do not scale to large data sets. Furthermore, for large data sets with relatively low signal one cannot even store every good tree individually, especially when the trees are required to be bifurcating. In this paper, we develop a novel object called the "history subpartition directed acyclic graph" (or "history sDAG" for short) that compactly represents an ensemble of trees with labels (e.g. ancestral sequences) mapped onto the internal nodes. The history sDAG can be built efficiently and can also be efficiently trimmed to only represent maximally parsimonious trees. We show that the history sDAG allows us to find many additional equally parsimonious trees, extending combinatorially beyond the ensemble used to construct it. We argue that this object could be useful as the "skeleton" of a more complete uncertainty quantification.

摘要

在许多情况下,不仅了解给定数据集的最佳系统发育树,而且了解高质量树的集合会很有用。这个目标通常使用贝叶斯技术来解决,然而,当前的贝叶斯方法无法扩展到大数据集。此外,对于信号相对较低的大数据集,甚至无法单独存储每一棵好树,特别是当树需要二叉分支时。在本文中,我们开发了一种名为“历史子分区有向无环图”(简称为“历史sDAG”)的新颖对象,它紧凑地表示一组带有映射到内部节点的标签(例如祖先序列)的树。历史sDAG可以高效构建,也可以高效修剪以仅表示最大简约树。我们表明,历史sDAG使我们能够找到许多额外的同等简约树,在组合上扩展到用于构建它的集合之外。我们认为这个对象可以作为更完整的不确定性量化的“骨架”。

相似文献

10
Phylo2Vec: A Vector Representation for Binary Trees.Phylo2Vec:二叉树的向量表示
Syst Biol. 2025 Apr 1;74(2):250-266. doi: 10.1093/sysbio/syae030.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验