Suppr超能文献

已完成临床试验中阿尔茨海默病亚型的知识引导深度时间聚类

Knowledge-guided Deep Temporal Clustering for Alzheimer's Disease Subtypes in Completed Clinical Trials.

作者信息

Wang Dulin, Ma Xiaotian, Schulz Paul E, Jiang Xiaoqian, Kim Yejin

出版信息

medRxiv. 2024 Oct 2:2023.10.13.23296985. doi: 10.1101/2023.10.13.23296985.

Abstract

Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder with varied patient progression. We aim to test the hypothesis that AD patients can be categorized into subgroups based on differences in progression. We leveraged data from three randomized clinical trials (RCTs) to develop a knowledge-guided, deep temporal clustering (KG-DTC) framework for AD subtyping. This model combined autoencoders for contextual information capture, k-means clustering for representation formation, and clinical outcome classification for clinical knowledge integration. The derived representations, encompassing demographics, APOE genotype, cognitive assessments, brain volumes, and biomarkers, were clustered using the Gaussian Mixture Model to identify AD subtypes. Our novel KG-DTC framework was developed using placebo data from 2,087 AD patients across three solanezumab clinical trials (EXPEDITION, EXPEDITION2, and EXPEDITION3), achieving high performance in outcome prediction and clustering. The KG-DTC model demonstrated superior clustering structures, especially when combined with k-means clustering loss. External validation with independent clinical trial data showed consistent clustering results, with a 0.33 silhouette score for three clusters. The model's stability was confirmed through a leave-one-out approach, with an average adjusted Rand Index around 0.945. Three distinct AD subtypes were identified, each exhibiting unique patterns of cognitive function, neurodegeneration, and amyloid beta levels. Notably, Subtype 3 (S3) showed rapid cognitive decline across multiple clinical measures (e.g., 0.64 in S1 vs. -1.06 in S2 vs. 15.09 in S3 of average ADAS total change score, p<.001). This innovative approach offers promising insights for understanding variability in treatment outcomes and personalizing AD treatment strategies.

摘要

阿尔茨海默病(AD)是一种多方面的神经退行性疾病,患者病情进展各异。我们旨在检验这样一个假设,即AD患者可根据病情进展差异分为不同亚组。我们利用来自三项随机临床试验(RCT)的数据,开发了一种用于AD亚型分类的知识引导深度时间聚类(KG-DTC)框架。该模型结合了用于上下文信息捕获的自动编码器、用于表示形成的k均值聚类以及用于临床知识整合的临床结果分类。使用高斯混合模型对包含人口统计学、APOE基因型、认知评估、脑容量和生物标志物的派生表示进行聚类,以识别AD亚型。我们新颖的KG-DTC框架是利用来自三项solanezumab临床试验(EXPEDITION、EXPEDITION2和EXPEDITION3)中2087名AD患者的安慰剂数据开发的,在结果预测和聚类方面表现出色。KG-DTC模型展示了优越的聚类结构,特别是与k均值聚类损失相结合时。使用独立临床试验数据进行的外部验证显示聚类结果一致,三个聚类的轮廓系数为0.33。通过留一法确认了模型的稳定性,平均调整兰德指数约为0.945。识别出三种不同的AD亚型,每种亚型都表现出独特的认知功能、神经退行性变和淀粉样β水平模式。值得注意的是,亚型3(S3)在多项临床指标上显示出快速的认知衰退(例如,平均ADAS总分变化得分,S1为0.64,S2为-1.06,S3为15.09,p<0.001)。这种创新方法为理解治疗结果的变异性和个性化AD治疗策略提供了有前景的见解。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验