Suppr超能文献

基于临床结局的深度颞聚类进行疾病进展亚型划分。

Clinical outcome-guided deep temporal clustering for disease progression subtyping.

机构信息

McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

J Biomed Inform. 2024 Oct;158:104732. doi: 10.1016/j.jbi.2024.104732. Epub 2024 Sep 30.

Abstract

OBJECTIVE

Complex diseases exhibit heterogeneous progression patterns, necessitating effective capture and clustering of longitudinal changes to identify disease subtypes for personalized treatments. However, existing studies often fail to design clustering-specific representations or neglect clinical outcomes, thereby limiting the interpretability and clinical utility.

METHOD

We design a unified framework for subtyping longitudinal progressive diseases. We focus on effectively integrating all data from disease progressions and improving patient representation for downstream clustering. Specifically, we propose a clinical Outcome-Guided Deep Temporal Clustering (OG-DTC) that generates representations informed by clustering and clinical outcomes. A GRU-based seq2seq architecture captures the temporal dynamics, and the model integrates k-means clustering and outcome regression to facilitate the formation of clustering structures and the integration of clinical outcomes. The learned representations are clustered using a Gaussian mixture model to identify distinct subtypes. The clustering results are extensively validated through reproducibility, stability, and significance tests.

RESULTS

We demonstrated the efficacy of our framework by applying it to three Alzheimer's Disease (AD) clinical trials. Through the AD case study, we identified three distinct subtypes with unique patterns associated with differentiated clinical declines across multiple measures. The ablation study revealed the contributions of each component in the model and showed that jointly optimizing the full model improved patient representations for clustering. Extensive validations showed that the derived clustering is reproducible, stable, and significant.

CONCLUSION

Our temporal clustering framework can derive robust clustering applicable for subtyping longitudinal progressive diseases and has the potential to account for subtype variability in clinical outcomes.

摘要

目的

复杂疾病表现出异质的进展模式,因此需要有效地捕捉和聚类纵向变化,以识别疾病亚型,从而实现个性化治疗。然而,现有的研究往往无法设计专门用于聚类的表示,或者忽略临床结果,从而限制了可解释性和临床实用性。

方法

我们设计了一个用于纵向进行性疾病分型的统一框架。我们专注于有效地整合疾病进展的所有数据,并改进下游聚类的患者表示。具体来说,我们提出了一种临床结果指导的深度时间聚类(OG-DTC),该方法生成了由聚类和临床结果信息驱动的表示。基于 GRU 的 seq2seq 架构捕获了时间动态,该模型集成了 K-means 聚类和结果回归,以促进聚类结构的形成和临床结果的整合。使用高斯混合模型对学习到的表示进行聚类,以识别不同的亚型。通过可重复性、稳定性和显著性检验,对聚类结果进行了广泛验证。

结果

我们通过将其应用于三个阿尔茨海默病(AD)临床试验,证明了我们框架的有效性。通过 AD 案例研究,我们确定了三个具有独特模式的不同亚型,这些模式与多个指标的临床衰退程度相关。消融研究揭示了模型中每个组件的贡献,并表明联合优化完整模型可以改善聚类的患者表示。广泛的验证表明,所得到的聚类是可重现的、稳定的和显著的。

结论

我们的时间聚类框架可以提取适用于纵向进行性疾病的稳健聚类,并有可能解释临床结果中的亚型变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验