Suppr超能文献

对神经活动进行全身性药理抑制可逆转脆性X综合征小鼠模型中的学习障碍。

Systemic pharmacological suppression of neural activity reverses learning impairment in a mouse model of Fragile X syndrome.

作者信息

Shakhawat Amin Md, Foltz Jacqueline G, Nance Adam B, Bhateja Jaydev, Raymond Jennifer L

机构信息

Department of Neurobiology, Stanford University, Stanford, California 94305-5125.

出版信息

bioRxiv. 2024 Apr 5:2023.10.05.561013. doi: 10.1101/2023.10.05.561013.

Abstract

The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-K and H2D (MH-CI ), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the knockout mouse model of Fragile X syndrome (FXS). Mice lacking gene expression in cerebellar Purkinje cells (L7- KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7- KO mice, as previously reported in MHCI mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7- KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.

摘要

关联性突触可塑性的增强往往导致学习受损而非提高。此前,我们提出这种学习障碍可能源于可塑性机制的饱和(Nguyen-Vu等人,2017年),或者更普遍地说,源于可塑性阈值的历史依赖性变化。这一假设基于缺乏两种I类主要组织相容性分子MHCI H2-K和H2D(MH-CI)的小鼠的实验结果,这些小鼠在小脑的平行纤维-浦肯野细胞突触处具有增强的关联性长期抑制(PF-浦肯野细胞LTD)。在这里,我们通过在第二个具有增强的PF-浦肯野细胞LTD的小鼠品系——脆性X综合征(FXS)基因敲除小鼠模型中测试阈值元可塑性假设的预测来扩展这项工作。小脑浦肯野细胞中缺乏基因表达的小鼠(L7-基因敲除小鼠)在两项与PF-浦肯野细胞LTD有关的动眼神经学习任务中选择性受损,而在与LTD无关的动眼神经学习任务中没有受损。与阈值元可塑性假设一致,旨在逆转PF-浦肯野细胞突触处LTD的行为预训练消除了L7-基因敲除小鼠的动眼神经学习缺陷,正如之前在MHCI小鼠中所报道的那样。此外,在预训练期间使用地西泮治疗来抑制神经活动,从而限制关联性LTD的诱导,也消除了L7-基因敲除小鼠的学习缺陷。这些结果支持了这样一种假设,即小脑依赖LTD的学习受可塑性的经验依赖性滑动阈值的支配。对升高的神经活动做出反应时LTD阈值的增加往往会不利于放电率的稳定性,但可以起到稳定突触权重和最近获得的记忆的作用。元可塑性观点可以为开发解决自闭症和其他神经系统疾病中学习障碍的新临床方法提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e11/11005630/ab767ee8e4fb/nihpp-2023.10.05.561013v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验