You Lu, Ferrat Lauric A, Oram Richard A, Parikh Hemang M, Steck Andrea K, Krischer Jeffrey, Redondo Maria J
Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
University of Exeter, Exeter, UK.
medRxiv. 2023 Oct 12:2023.10.10.23296375. doi: 10.1101/2023.10.10.23296375.
Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal clinically meaningful clusters in the at-risk population and allow for non-linear relationships between predictors are lacking. We aimed to identify and characterize clusters of islet autoantibody-positive individuals that share similar characteristics and type 1 diabetes risk.
We tested a novel outcome-guided clustering method in initially non-diabetic autoantibody-positive relatives of individuals with type 1 diabetes, using the TrialNet Pathway to Prevention (PTP) study data (n=1127). The outcome of the analysis was time to type 1 diabetes and variables in the model included demographics, genetics, metabolic factors and islet autoantibodies. An independent dataset (Diabetes Prevention Trial of Type 1 Diabetes, DPT-1 study) (n=704) was used for validation.
The analysis revealed 8 clusters with varying type 1 diabetes risks, categorized into three groups. Group A had three clusters with high glucose levels and high risk. Group B included four clusters with elevated autoantibody titers. Group C had three lower-risk clusters with lower autoantibody titers and glucose levels. Within the groups, the clusters exhibit variations in characteristics such as glucose levels, C-peptide levels, age, and genetic risk. A decision rule for assigning individuals to clusters was developed. The validation dataset confirms that the clusters can identify individuals with similar characteristics.
Demographic, metabolic, immunological, and genetic markers can be used to identify clusters of distinctive characteristics and different risks of progression to type 1 diabetes among autoantibody-positive individuals with a family history of type 1 diabetes. The results also revealed the heterogeneity in the population and complex interactions between variables.
尽管已经开发出用于预测1型糖尿病风险的统计模型,但仍缺乏能够揭示高危人群中具有临床意义的聚类并考虑预测因素之间非线性关系的方法。我们旨在识别和描述具有相似特征和1型糖尿病风险的胰岛自身抗体阳性个体的聚类。
我们使用预防试验网途径(PTP)研究数据(n = 1127),在最初非糖尿病的1型糖尿病个体的自身抗体阳性亲属中测试了一种新型的结果导向聚类方法。分析的结果是1型糖尿病发病时间,模型中的变量包括人口统计学、遗传学、代谢因素和胰岛自身抗体。使用一个独立数据集(1型糖尿病预防试验,DPT - 1研究)(n = 704)进行验证。
分析揭示了8个具有不同1型糖尿病风险的聚类,分为三组。A组有三个聚类,血糖水平高且风险高。B组包括四个自身抗体滴度升高的聚类。C组有三个风险较低的聚类,自身抗体滴度和血糖水平较低。在各组中,聚类在血糖水平、C肽水平、年龄和遗传风险等特征方面存在差异。制定了将个体分配到聚类的决策规则。验证数据集证实这些聚类可以识别具有相似特征的个体。
人口统计学、代谢、免疫和遗传标记可用于识别有1型糖尿病家族史的自身抗体阳性个体中具有独特特征和不同进展为1型糖尿病风险的聚类。结果还揭示了人群中的异质性以及变量之间的复杂相互作用。