Jiang Yuchao, Luo Cheng, Wang Jijun, Palaniyappan Lena, Chang Xiao, Xiang Shitong, Zhang Jie, Duan Mingjun, Huang Huan, Gaser Christian, Nemoto Kiyotaka, Miura Kenichiro, Hashimoto Ryota, Westlye Lars T, Richard Genevieve, Fernandez-Cabello Sara, Parker Nadine, Andreassen Ole A, Kircher Tilo, Nenadić Igor, Stein Frederike, Thomas-Odenthal Florian, Teutenberg Lea, Usemann Paula, Dannlowski Udo, Hahn Tim, Grotegerd Dominik, Meinert Susanne, Lencer Rebekka, Tang Yingying, Zhang Tianhong, Li Chunbo, Yue Weihua, Zhang Yuyanan, Yu Xin, Zhou Enpeng, Lin Ching-Po, Tsai Shih-Jen, Rodrigue Amanda L, Glahn David, Pearlson Godfrey, Blangero John, Karuk Andriana, Pomarol-Clotet Edith, Salvador Raymond, Fuentes-Claramonte Paola, Garcia-León María Ángeles, Spalletta Gianfranco, Piras Fabrizio, Vecchio Daniela, Banaj Nerisa, Cheng Jingliang, Liu Zhening, Yang Jie, Gonul Ali Saffet, Uslu Ozgul, Burhanoglu Birce Begum, Demir Aslihan Uyar, Rootes-Murdy Kelly, Calhoun Vince D, Sim Kang, Green Melissa, Quidé Yann, Chung Young Chul, Kim Woo-Sung, Sponheim Scott R, Demro Caroline, Ramsay Ian S, Iasevoli Felice, de Bartolomeis Andrea, Barone Annarita, Ciccarelli Mariateresa, Brunetti Arturo, Cocozza Sirio, Pontillo Giuseppe, Tranfa Mario, Park Min Tae M, Kirschner Matthias, Georgiadis Foivos, Kaiser Stefan, Rheenen Tamsyn E Van, Rossell Susan L, Hughes Matthew, Woods William, Carruthers Sean P, Sumner Philip, Ringin Elysha, Spaniel Filip, Skoch Antonin, Tomecek David, Homan Philipp, Homan Stephanie, Omlor Wolfgang, Cecere Giacomo, Nguyen Dana D, Preda Adrian, Thomopoulos Sophia, Jahanshad Neda, Cui Long-Biao, Yao Dezhong, Thompson Paul M, Turner Jessica A, van Erp Theo G M, Cheng Wei, Feng Jianfeng
Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
medRxiv. 2023 Oct 12:2023.10.11.23296862. doi: 10.1101/2023.10.11.23296862.
Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
机器学习可用于根据共同的临床和生物学基础来定义精神疾病的亚型,这是朝着建立基于生物学的精神障碍亚型迈出的关键一步。为了识别精神分裂症疾病进展的亚型,我们分析了来自41个国际队列(包括ENIGMA精神分裂症工作组、非ENIGMA队列和公共数据集)汇总的4291例精神分裂症患者(1709名女性,年龄=32.5岁±11.9)和7078名健康对照者(3461名女性,年龄=33.0岁±12.7)的横断面脑结构磁共振成像(MRI)数据。我们使用一种称为亚型和阶段推断(SuStaIn)的机器学习方法,通过绘制精神分裂症中灰质(GM)损失的空间和时间轨迹,实施了一种由脑成像驱动的分类,识别出两个不同的神经结构亚组。亚组1(n=2622)的特征是早期以皮质为主的损失(ECL)且纹状体增大,而亚组2(n=1600)在海马体、杏仁核、丘脑、脑干和纹状体中表现出早期以皮质下为主的损失(ESL)。这些重建轨迹表明,GM体积减少在ECL中起源于布洛卡区/相邻的额岛叶皮质,在ESL中起源于海马体/相邻的内侧颞叶结构。随着病程延长,ECL亚型的阴性症状和抑郁/焦虑逐渐加重,而阳性症状的下降较少。我们证实了这些基于成像的亚型在不同样本点的可重复性,不受这些地理位置(包括欧洲、北美和东亚)不同的宏观经济和种族因素影响。这些发现强调了精神分裂症背后存在不同的病理生物学基础。这种基于成像的新分类法有可能识别出具有共同神经生物学特征的更同质的亚人群,从而表明基于生物学因素重新定义现有疾病结构的可行性。