Specht Ivan O A, Petros Brittany A, Moreno Gage K, Brock-Fisher Taylor, Krasilnikova Lydia A, Schifferli Mark, Yang Katherine, Cronan Paul, Glennon Olivia, Schaffner Stephen F, Park Daniel J, MacInnis Bronwyn L, Ozonoff Al, Fry Ben, Mitzenmacher Michael D, Varilly Patrick, Sabeti Pardis C
The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Harvard College, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.
medRxiv. 2023 Oct 15:2023.10.14.23297039. doi: 10.1101/2023.10.14.23297039.
Genome sequencing can offer critical insight into pathogen spread in viral outbreaks, but existing transmission inference methods use simplistic evolutionary models and only incorporate a portion of available genetic data. Here, we develop a robust evolutionary model for transmission reconstruction that tracks the genetic composition of within-host viral populations over time and the lineages transmitted between hosts. We confirm that our model reliably describes within-host variant frequencies in a dataset of 134,682 SARS-CoV-2 deep-sequenced genomes from Massachusetts, USA. We then demonstrate that our reconstruction approach infers transmissions more accurately than two leading methods on synthetic data, as well as in a controlled outbreak of bovine respiratory syncytial virus and an epidemiologically-investigated SARS-CoV-2 outbreak in South Africa. Finally, we apply our transmission reconstruction tool to 5,692 outbreaks among the 134,682 Massachusetts genomes. Our methods and results demonstrate the utility of within-host variation for transmission inference of SARS-CoV-2 and other pathogens, and provide an adaptable mathematical framework for tracking within-host evolution.
基因组测序能够为病毒爆发中病原体的传播提供关键见解,但现有的传播推断方法使用的是简单的进化模型,且仅纳入了一部分可用的遗传数据。在此,我们开发了一种用于传播重建的稳健进化模型,该模型可随时间追踪宿主内病毒群体的遗传组成以及宿主间传播的谱系。我们证实,我们的模型能够可靠地描述来自美国马萨诸塞州的134,682个严重急性呼吸综合征冠状病毒2(SARS-CoV-2)深度测序基因组数据集中宿主内变异频率。然后,我们证明,在合成数据以及牛呼吸道合胞病毒的一次受控爆发和南非一次经流行病学调查的SARS-CoV-2爆发中,我们的重建方法比两种领先方法能更准确地推断传播情况。最后,我们将传播重建工具应用于134,682个马萨诸塞州基因组中的5,692次爆发。我们的方法和结果证明了宿主内变异对于SARS-CoV-2和其他病原体传播推断的实用性,并为追踪宿主内进化提供了一个可适应的数学框架。