Service Susan K, De La Hoz Juan, Diaz-Zuluaga Ana M, Arias Alejandro, Pimplaskar Aditya, Luu Chuc, Mena Laura, Valencia Johanna, Ramírez Mauricio Castaño, Bearden Carrie E, Sabbati Chiara, Reus Victor I, López-Jaramillo Carlos, Freimer Nelson B, Loohuis Loes M Olde
Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA.
Research Group in Psychiatry (GIPSI), Institute of Medical Research, Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Colombia.
medRxiv. 2023 Oct 2:2023.09.28.23296092. doi: 10.1101/2023.09.28.23296092.
Bipolar Disorder (BD) is a severe and chronic disorder characterized by recurrent episodes of depression, mania, and/or hypomania. Most BD patients initially present with depressive symptoms, resulting in a delayed diagnosis of BD and poor clinical outcomes. This study leverages electronic health record (EHR) data from the Clínica San Juan de Dios Manizales in Colombia to identify features predictive of the transition from Major Depressive Disorder (MDD) to BD. Analyzing EHR data from 13,607 patients diagnosed with MDD over 15 years, we identified 1,610 cases of conversion to BD. Using a multivariate Cox regression model, we identified severity of the initial MDD episode, the presence of psychosis and hospitalization at first episode, family history of mood or psychotic disorders, female gender to be predictive of the conversion to BD. Additionally, we observed associations with medication classes (prescriptions of mood stabilizers, antipsychotics, and antidepressants) and clinical features (delusions, suicide attempt, suicidal ideation, use of marijuana and alcohol use/abuse) derived from natural language processing (NLP) of clinical notes. Together, these risk factors predicted BD conversion within five years of the initial MDD diagnosis, with a recall of 72% and a precision of 38%. Our study confirms many previously identified risk factors identified through registry-based studies (such as female gender and psychotic depression at the index MDD episode), and identifies novel ones (specifically, suicidal ideation and suicide attempt extracted from clinical notes). These results simultaneously demonstrate the validity of using EHR data for predicting BD conversion as well as underscore its potential for the identification of novel risk factors and improving early diagnosis.
双相情感障碍(BD)是一种严重的慢性疾病,其特征为抑郁、躁狂和/或轻躁狂发作反复发作。大多数双相情感障碍患者最初表现为抑郁症状,导致双相情感障碍的诊断延迟且临床预后不佳。本研究利用哥伦比亚马尼萨莱斯圣胡安·迪奥斯诊所的电子健康记录(EHR)数据,以识别预测从重度抑郁症(MDD)转变为双相情感障碍的特征。通过分析15年间被诊断为重度抑郁症的13607名患者的电子健康记录数据,我们确定了1610例转变为双相情感障碍的病例。使用多变量Cox回归模型,我们确定了初始重度抑郁症发作的严重程度、首次发作时是否存在精神病和住院情况、情绪或精神障碍的家族史、女性性别可预测转变为双相情感障碍。此外,我们观察到与药物类别(心境稳定剂、抗精神病药物和抗抑郁药物的处方)以及从临床记录的自然语言处理(NLP)得出的临床特征(妄想、自杀未遂、自杀意念、大麻使用以及酒精使用/滥用)之间的关联。这些风险因素共同预测了在初始重度抑郁症诊断后的五年内双相情感障碍的转变,召回率为72%,精确率为38%。我们的研究证实了许多先前通过基于登记处的研究确定的风险因素(如女性性别和索引重度抑郁症发作时的精神病性抑郁),并确定了新的风险因素(具体而言,从临床记录中提取的自杀意念和自杀未遂)。这些结果同时证明了使用电子健康记录数据预测双相情感障碍转变的有效性,并强调了其在识别新风险因素和改善早期诊断方面的潜力。