Service Susan K, De La Hoz Juan F, Diaz-Zuluaga Ana M, Arias Alejandro, Pimplaskar Aditya, Luu Chuc, Mena Laura, Valencia-Echeverry Johanna, Ramírez Mauricio Castaño, Bearden Carrie E, Sabatti Chiara, Reus Victor I, López-Jaramillo Carlos, Freimer Nelson B, Olde Loohuis Loes M
Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
Research Group in Psychiatry (GIPSI), Institute of Medical Research, Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Colombia.
Bipolar Disord. 2025 Feb;27(1):47-56. doi: 10.1111/bdi.13512. Epub 2024 Dec 12.
Most bipolar disorder (BD) patients initially present with depressive symptoms, resulting in a delayed diagnosis of BD and poor clinical outcomes. This study aims to identify features predictive of the conversion from Major Depressive Disorder (MDD) to BD by leveraging electronic health record (EHR) data from the Clínica San Juan de Dios Manizales in Colombia.
We employed a multivariable Cox regression model to identify important predictors of conversion from MDD to BD.
Analyzing 15 years of EHR data from 13,607 patients diagnosed with MDD, a total of 1610 (11.8%) transitioned to BD. Predictive features of the conversion to BD included severity of the initial MDD episode, presence of psychosis and hospitalization at first episode, family history of BD, and female gender. Additionally, we observed associations with medication classes (positive associations with prescriptions of mood stabilizers, antipsychotics, and negative associations with antidepressants) and a positive association with suicidality, a feature derived from natural language processing (NLP) of clinical notes. Together, these risk factors predicted BD conversion within 5 years of the initial MDD diagnosis, with a recall of 72% and a precision of 38%.
Our study confirms previously identified risk factors identified through registry-based studies (female gender and psychotic depression at the index MDD episode) and identifies novel ones (suicidality extracted from clinical notes). These results simultaneously demonstrate the validity of using EHR data for predicting BD conversion and underscore its potential for the identification of novel risk factors, thereby improving early diagnosis.
大多数双相情感障碍(BD)患者最初表现为抑郁症状,导致BD诊断延迟且临床结局不佳。本研究旨在利用哥伦比亚马尼萨莱斯圣胡安·迪奥斯诊所的电子健康记录(EHR)数据,确定预测重度抑郁症(MDD)转化为BD的特征。
我们采用多变量Cox回归模型来确定从MDD转化为BD的重要预测因素。
分析了13607例诊断为MDD患者的15年EHR数据,共有1610例(11.8%)转化为BD。转化为BD的预测特征包括初始MDD发作的严重程度、首次发作时存在精神病和住院情况、BD家族史以及女性性别。此外,我们观察到与药物类别有关联(与心境稳定剂、抗精神病药物处方呈正相关,与抗抑郁药物呈负相关)以及与自杀观念呈正相关,自杀观念是通过临床记录的自然语言处理(NLP)得出的一个特征。这些危险因素共同预测了在初始MDD诊断后5年内BD的转化情况,召回率为72%,精确率为38%。
我们的研究证实了先前通过基于登记处的研究确定的危险因素(女性性别和索引MDD发作时的精神病性抑郁),并确定了新的危险因素(从临床记录中提取的自杀观念)。这些结果同时证明了使用EHR数据预测BD转化的有效性,并强调了其识别新危险因素的潜力,从而改善早期诊断。