Suppr超能文献

RNA 基础设施分析揭示了拥挤空间中的转录组结构。

RNA Infrastructure Profiling Illuminates Transcriptome Structure in Crowded Spaces.

作者信息

Xiao Lu, Fang Linglan, Kool Eric T

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305, United States.

Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States.

出版信息

bioRxiv. 2023 Oct 9:2023.10.09.561413. doi: 10.1101/2023.10.09.561413.

Abstract

RNAs can fold into compact three-dimensional structures, and most RNAs undergo protein interactions in the cell. These compact and occluded environments can block the ability of structure-probing agents to provide useful data about the folding and modification of the underlying RNA. The development of probes that can analyze structure in crowded settings, and differentiate the proximity of interactions, can shed new light on RNA biology. To this end, here we employ 2'-OH-reactive probes that are small enough to access folded RNA structure underlying many close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. We compare reverse transcriptase stops in RNA-Seq data from probes of small and standard size to assess RNA-protein proximity and evaluate solvent-exposed tunnels adjacent to RNA. The data are analyzed first with structurally characterized complexes (human 18S and 28S RNA), and then applied transcriptome-wide to polyadenylated transcripts in HEK293 cells. In our transcriptome profile, the smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. We further show that acetyl probes provide superior signals for identifying mA modification sites in transcripts, and provide information regarding methylation sites that are inaccessible to a larger standard probe. RNA infrastructure profiling (RISP) enables enhanced analysis of transcriptome structure, modification, and interactions in living cells, especially in spatially crowded settings.

摘要

RNA能够折叠成紧密的三维结构,并且大多数RNA在细胞内会与蛋白质发生相互作用。这些紧密且封闭的环境会阻碍结构探测剂提供有关基础RNA折叠和修饰的有用数据的能力。开发能够在拥挤环境中分析结构并区分相互作用远近的探针,可以为RNA生物学带来新的启示。为此,我们在此采用了2'-OH反应性探针,其足够小,能够进入细胞内许多紧密分子接触下的折叠RNA结构,为细胞内RNA结构分析提供了更广泛的覆盖范围。我们比较了来自小尺寸和标准尺寸探针的RNA测序数据中的逆转录酶终止情况,以评估RNA与蛋白质的接近程度,并评估与RNA相邻的溶剂暴露通道。首先使用结构已明确的复合物(人18S和28S RNA)对数据进行分析,然后将其全转录组应用于HEK293细胞中的多聚腺苷酸化转录本。在我们的转录组图谱中,最小的探针乙酰咪唑(AcIm)比更大的传统试剂NAIN3产生的结构覆盖范围大80%,在数百个转录本中提供了增强的结构信息。我们进一步表明,乙酰化探针在识别转录本中的mA修饰位点方面提供了卓越的信号,并提供了关于较大标准探针无法触及的甲基化位点的信息。RNA基础设施分析(RISP)能够增强对活细胞,尤其是在空间拥挤环境中的转录组结构、修饰和相互作用的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d314/10592667/1de1c0c797be/nihpp-2023.10.09.561413v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验