Department of Pediatrics.
Children's Research Institute.
Am J Respir Cell Mol Biol. 2024 Feb;70(2):94-109. doi: 10.1165/rcmb.2023-0038OC.
Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. -acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.
氧化应激、炎症和内质网(ER)应激依次发生在支气管肺发育不良(BPD)中,所有这些都会导致 DNA 损伤。当 DNA 损伤变得无法修复时,肿瘤抑制因子增加,随后发生细胞凋亡或衰老。虽然细胞衰老有助于伤口愈合,但它的持续存在会抑制生长。因此,我们假设细胞衰老有助于 BPD 的进展。我们从人体尸检肺组织中获取标本,将出生后第 1 天(P1)至 P10 期间接受 95%氧气暴露的 Sprague-Dawley 大鼠幼仔作为 BPD 表型模型。通过腹腔内注射 N-乙酰-L-赖氨酰-L-酪氨酸-L-半胱氨酸酰胺(KYC)、牛磺熊脱氧胆酸(TUDCA)和 Foxo4 驱动子,分别减轻髓过氧化物酶氧化剂生成、ER 应激和细胞衰老。通过组织学、转录组学和免疫印迹检查肺组织。结果表明,大鼠和人类 BPD 肺组织中的细胞衰老增加,表现为氧化 DNA 损伤、肿瘤抑制因子、GL-13 染色和炎症细胞因子增加,而细胞增殖和核纤层蛋白 B 表达减少。BPD 大鼠肺组织中的细胞衰老相关转录物在 P10 和 P21 时富集。单细胞 RNA 测序显示,几种细胞类型,包括 2 型肺泡细胞,细胞衰老增加。此外,BPD 大鼠肺组织中 Foxo4-p53 结合增加。每天腹腔内注射 TUDCA 或 KYC 可有效减少细胞衰老,改善肺泡复杂性,并部分维持 2 型肺泡细胞数量。在 P4、P6、P8 和 P10 时给予 Foxo4 驱动子,结果与 TUDCA 和 KYC 相似。我们的数据表明,在高氧最初诱导后,细胞衰老在 BPD 中发挥重要作用。减少髓过氧化物酶毒性氧化剂的产生、ER 应激和减轻细胞衰老可能是阻止 BPD 进展的潜在治疗策略。