Suppr超能文献

一种用于液相色谱-质谱代谢组学数据处理的自动化工作流组合系统。

An Automated Workflow Composition System for Liquid Chromatography-Mass Spectrometry Metabolomics Data Processing.

机构信息

Division of General Internal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States.

出版信息

J Am Soc Mass Spectrom. 2023 Dec 6;34(12):2857-2863. doi: 10.1021/jasms.3c00248. Epub 2023 Oct 24.

Abstract

Liquid chromatography-mass spectrometry (LC-MS) metabolomics studies produce high-dimensional data that must be processed by a complex network of informatics tools to generate analysis-ready data sets. As the first computational step in metabolomics, data processing is increasingly becoming a challenge for researchers to develop customized computational workflows that are applicable for LC-MS metabolomics analysis. Ontology-based automated workflow composition (AWC) systems provide a feasible approach for developing computational workflows that consume high-dimensional molecular data. We used the Automated Pipeline Explorer (APE) to create an AWC for LC-MS metabolomics data processing across three use cases. Our results show that APE predicted 145 data processing workflows across all the three use cases. We identified six traditional workflows and six novel workflows. Through manual review, we found that one-third of novel workflows were executable whereby the data processing function could be completed without obtaining an error. When selecting the top six workflows from each use case, the computational viable rate of our predicted workflows reached 45%. Collectively, our study demonstrates the feasibility of developing an AWC system for LC-MS metabolomics data processing.

摘要

液相色谱-质谱(LC-MS)代谢组学研究产生高维数据,必须通过复杂的信息学工具网络进行处理,才能生成可用于分析的数据集。作为代谢组学分析的第一个计算步骤,数据处理越来越成为研究人员开发适用于 LC-MS 代谢组学分析的定制计算工作流程的挑战。基于本体的自动化工作流程组成(AWC)系统为开发消耗高维分子数据的计算工作流程提供了一种可行的方法。我们使用自动管道探索器(APE)为跨三个用例的 LC-MS 代谢组学数据处理创建了一个 AWC。我们的结果表明,APE 预测了所有三个用例中的 145 个数据处理工作流程。我们确定了六个传统工作流程和六个新工作流程。通过手动审查,我们发现三分之一的新工作流程是可执行的,即可以在不出现错误的情况下完成数据处理功能。从每个用例中选择前六个工作流程时,我们预测的工作流程的计算可行率达到了 45%。总的来说,我们的研究证明了开发 LC-MS 代谢组学数据处理的 AWC 系统的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验