Du Xinsong, Dobrowolski Amanda, Brochhausen Mathias, Garrett Timothy J, Hogan William R, Lemas Dominick J
Division of General Internal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.
Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States.
J Am Soc Mass Spectrom. 2025 Feb 5;36(2):433-438. doi: 10.1021/jasms.4c00364. Epub 2025 Jan 5.
Reproducibility in untargeted metabolomics data processing remains a significant challenge due to software limitations and the complex series of steps required. To address these issues, we developed Nextflow4MS-DIAL, a reproducible workflow for liquid chromatography-mass spectrometry (LC-MS) metabolomics data processing, validated with publicly available data from MetaboLights (MTBLS733). Nextflow4MS-DIAL automates LC-MS data processing to minimize human errors from manual data handling. The workflow supports software containerization, ensuring computational reproducibility and enabling collaborative research. Nextflow4MS-DIAL is compatible with any Unix-like system and supports multiple job schedulers, offering flexibility and ease of use. The Nextflow4MS-DIAL workflow is available under the permissive MIT license: https://github.com/Nextflow4Metabolomics/nextflow4ms-dial.
由于软件限制以及所需的一系列复杂步骤,非靶向代谢组学数据处理中的可重复性仍然是一项重大挑战。为了解决这些问题,我们开发了Nextflow4MS-DIAL,这是一种用于液相色谱-质谱(LC-MS)代谢组学数据处理的可重复工作流程,并使用来自MetaboLights(MTBLS733)的公开可用数据进行了验证。Nextflow4MS-DIAL可自动进行LC-MS数据处理,以最大限度减少手动数据处理中的人为错误。该工作流程支持软件容器化,确保计算的可重复性并促进合作研究。Nextflow4MS-DIAL与任何类Unix系统兼容,并支持多个作业调度程序,具有灵活性和易用性。Nextflow4MS-DIAL工作流程遵循宽松的MIT许可:https://github.com/Nextflow4Metabolomics/nextflow4ms-dial 。