Suppr超能文献

机器学习子宫内膜癌风险预测模型:整合欧洲肿瘤内科学会指南与肿瘤免疫框架

Machine learning endometrial cancer risk prediction model: integrating guidelines of European Society for Medical Oncology with the tumor immune framework.

机构信息

Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy

Alleanza Contro il Cancro, Rome, Italy.

出版信息

Int J Gynecol Cancer. 2023 Nov 6;33(11):1708-1714. doi: 10.1136/ijgc-2023-004671.

Abstract

OBJECTIVE

Current prognostic factors for endometrial cancer are not sufficient to predict recurrence in early stages. Treatment choices are based on the prognostic factors included in the risk classes defined by the ESMO-ESGO-ESTRO (European Society for Medical Oncology-European Society of Gynaecological Oncology-European Society for Radiotherapy and Oncology) consensus conference with the new biomolecular classification based on POLE, TP53, and microsatellite instability status. However, a minority of early stage cases relapse regardless of their low risk profiles. Integration of the immune context status to existing molecular based models has not been fully evaluated. This study aims to investigate whether the integration of the immune landscape in the tumor microenvironment could improve clinical risk prediction models and allow better profiling of early stages.

METHODS

Leveraging the potential of in silico deconvolution tools, we estimated the relative abundances of immune populations in public data and then applied feature selection methods to generate a machine learning based model for disease free survival probability prediction.

RESULTS

We included information on International Federation of Gynecology and Obstetrics (FIGO) stage, tumor mutational burden, microsatellite instability, POLEmut status, interferon γ signature, and relative abundances of monocytes, natural killer cells, and CD4+T cells to build a relapse prediction model and obtained a balanced accuracy of 69%. We further identified two novel early stage profiles that undergo different pathways of recurrence.

CONCLUSION

This study presents an extension of current prognostic factors for endometrial cancer by exploiting machine learning models and deconvolution techniques on available public biomolecular data. Prospective clinical trials are advisable to validate the early stage stratification.

摘要

目的

目前用于预测子宫内膜癌复发的预后因素尚不足以预测早期阶段的复发。治疗选择基于欧洲肿瘤内科学会-欧洲妇科肿瘤学会-欧洲放射肿瘤学会(ESMO-ESGO-ESTRO)共识会议中包含的预后因素,这些因素包括 POLE、TP53 和微卫星不稳定性状态的新生物分子分类,并结合基于风险分级的定义。然而,尽管大多数早期病例的风险较低,但仍有少数病例会复发。整合免疫相关状态与现有的基于分子的模型尚未得到充分评估。本研究旨在探讨肿瘤微环境中的免疫景观是否可以改善临床风险预测模型,并更好地对早期阶段进行分类。

方法

利用计算去卷积工具的潜力,我们估计了公共数据中免疫群体的相对丰度,然后应用特征选择方法来生成基于机器学习的无病生存概率预测模型。

结果

我们纳入了国际妇产科联合会(FIGO)分期、肿瘤突变负担、微卫星不稳定性、POLEmut 状态、干扰素 γ 特征以及单核细胞、自然杀伤细胞和 CD4+T 细胞的相对丰度信息,以建立复发预测模型,并获得了 69%的平衡准确性。我们进一步确定了两种新的早期复发途径不同的早期阶段特征。

结论

本研究通过利用机器学习模型和可用的公共生物分子数据的去卷积技术,对子宫内膜癌的现有预后因素进行了扩展。建议进行前瞻性临床试验来验证早期分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f0/10646888/1438ded9f1cf/ijgc-2023-004671f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验