Suppr超能文献

基于原始植被数据的可解释人工智能方法对从无监测流域流入大堡礁的水流中的时空氮进行分类。

Explainable AI approach with original vegetation data classifies spatio-temporal nitrogen in flows from ungauged catchments to the Great Barrier Reef.

作者信息

O'Sullivan Cherie M, Deo Ravinesh C, Ghahramani Afshin

机构信息

University of Southern Queensland, Toowoomba, QLD, 4350, Australia. Cherie.O'

School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia.

出版信息

Sci Rep. 2023 Oct 24;13(1):18145. doi: 10.1038/s41598-023-45259-0.

Abstract

Transfer of processed data and parameters to ungauged catchments from the most similar gauged counterpart is a common technique in water quality modelling. But catchment similarities for Dissolved Inorganic Nitrogen (DIN) are ill posed, which affects the predictive capability of models reliant on such methods for simulating DIN. Spatial data proxies to classify catchments for most similar DIN responses are a demonstrated solution, yet their applicability to ungauged catchments is unexplored. We adopted a neural network pattern recognition model (ANN-PR) and explainable artificial intelligence approach (SHAP-XAI) to match all ungauged catchments that flow to the Great Barrier Reef to gauged ones based on proxy spatial data. Catchment match suitability was verified using a neural network water quality (ANN-WQ) simulator trained on gauged catchment datasets, tested by simulating DIN for matched catchments in unsupervised learning scenarios. We show that discriminating training data to DIN regime benefits ANN-WQ simulation performance in unsupervised scenarios ( p< 0.05). This phenomenon demonstrates that proxy spatial data is a useful tool to classify catchments with similar DIN regimes. Catchments lacking similarity with gauged ones are identified as priority monitoring areas to gain observed data for all DIN regimes in catchments that flow to the Great Barrier Reef, Australia.

摘要

将处理后的数据和参数从最相似的有监测数据的流域转移到无监测数据的流域,是水质建模中的一种常用技术。但溶解无机氮(DIN)的流域相似性并不明确,这影响了依赖此类方法模拟DIN的模型的预测能力。利用空间数据代理对具有最相似DIN响应的流域进行分类是一种已被证实的解决方案,但其在无监测数据流域的适用性尚未得到探索。我们采用神经网络模式识别模型(ANN-PR)和可解释人工智能方法(SHAP-XAI),基于代理空间数据将所有流入大堡礁的无监测数据流域与有监测数据的流域进行匹配。利用在有监测数据的流域数据集上训练的神经网络水质(ANN-WQ)模拟器,通过在无监督学习场景中模拟匹配流域的DIN来验证流域匹配的适用性。我们表明,在无监督场景中,将训练数据区分为DIN状态有利于ANN-WQ模拟性能(p<0.05)。这一现象表明,代理空间数据是对具有相似DIN状态的流域进行分类的有用工具。与有监测数据的流域缺乏相似性的流域被确定为优先监测区域,以便获取澳大利亚流入大堡礁的流域中所有DIN状态的观测数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53fc/10598196/e668608ba196/41598_2023_45259_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验