Wang Qi, Jermyn Sophie, Quashie David, Gatti Sarah Elizabeth, Katuri Jaideep, Ali Jamel
Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
National High Magnetic Field Laboratory Tallahassee Florida 32310 USA.
RSC Adv. 2023 Oct 23;13(44):30951-30958. doi: 10.1039/d3ra05844a. eCollection 2023 Oct 18.
Erythrocytes are natural multifunctional biomaterials that can be engineered for use as micro robotic vectors for therapeutic applications. Erythrocyte based micromotors offer several advantages over existing bio-hybrid micromotors, but current control mechanisms are often complex, utilizing multiple external signals, such as tandem magnetic and acoustic fields to achieve both actuation and directional control. Further, existing actuation methods rely on proximity to a substrate to achieve effective propulsion through symmetry breaking. Alternatively, control mechanisms only requiring the use of a single control input may aid in the translational use of these devices. Here, we report a simple scalable technique for fabricating erythrocyte-based magnetic biohybrid micromotors and demonstrate the ability to control two modes of motion, surface rolling and bulk swimming, using a single uniform rotating magnetic field. While rolling exploits symmetry breaking from the proximity of a surface, bulk swimming relies on naturally occurring shape asymmetry of erythrocytes. We characterize swimming and rolling kinematics, including step-out frequencies, propulsion velocity, and steerability in aqueous solutions using open-loop control. The observed dynamics may enable the development of future erythrocyte micromotor designs and control strategies for therapeutic applications.
红细胞是天然的多功能生物材料,可被设计用作治疗应用的微型机器人载体。基于红细胞的微马达比现有的生物混合微马达具有多个优势,但目前的控制机制通常很复杂,需要利用多种外部信号,如串联磁场和声场来实现驱动和方向控制。此外,现有的驱动方法依赖于靠近底物,通过打破对称性来实现有效推进。相比之下,仅需要使用单一控制输入的控制机制可能有助于这些装置的转化应用。在此,我们报告了一种简单的可扩展技术,用于制造基于红细胞的磁性生物混合微马达,并展示了使用单一均匀旋转磁场控制两种运动模式(表面滚动和整体游动)的能力。虽然滚动利用了靠近表面时的对称性破坏,但整体游动依赖于红细胞自然存在的形状不对称性。我们使用开环控制来表征水溶液中的游动和滚动运动学,包括跳出频率、推进速度和可操纵性。观察到的动力学可能有助于未来红细胞微马达设计和治疗应用控制策略的发展。