Suppr超能文献

验证一种重新实现的算法,以整合转录组和 ChIP-seq 数据。

Validating a re-implementation of an algorithm to integrate transcriptome and ChIP-seq data.

机构信息

Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea.

出版信息

PeerJ. 2023 Oct 20;11:e16318. doi: 10.7717/peerj.16318. eCollection 2023.

Abstract

Transcription factor binding to a gene regulatory region induces or represses its expression. Binding and expression target analysis (BETA) integrates the binding and gene expression data to predict this function. First, the regulatory potential of the factor is modeled based on the distance of its binding sites from the transcription start sites in a decay function. Then the differential expression statistics from an experiment where this factor was perturbed represent the binding effect. The rank product of the two values is employed to order in importance. This algorithm was originally implemented in Python. We reimplemented the algorithm in R to take advantage of existing data structures and other tools for downstream analyses. Here, we attempted to replicate the findings in the original BETA paper. We applied the new implementation to the same datasets using default and varying inputs and cutoffs. We successfully replicated the original results. Moreover, we showed that the method was appropriately influenced by varying the input and was robust to choices of cutoffs in statistical testing.

摘要

转录因子与基因调控区域结合会诱导或抑制其表达。结合和表达靶标分析(BETA)将结合和基因表达数据整合在一起,以预测该功能。首先,基于其结合位点与转录起始位点之间的距离,使用衰减函数对因子的调控潜力进行建模。然后,使用该因子受到干扰的实验中的差异表达统计数据来表示结合效应。这两个值的秩积用于重要性排序。该算法最初是用 Python 实现的。我们在 R 中重新实现了该算法,以利用现有的数据结构和其他工具进行下游分析。在这里,我们尝试复制 BETA 论文中的原始发现。我们使用默认值和变化的输入和截止值将新实现应用于相同的数据集。我们成功复制了原始结果。此外,我们还表明,该方法受输入变化的适当影响,并且在统计检验中对截止值的选择具有鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caab/10592348/d6fe1998a899/peerj-11-16318-g001.jpg

相似文献

1
Validating a re-implementation of an algorithm to integrate transcriptome and ChIP-seq data.
PeerJ. 2023 Oct 20;11:e16318. doi: 10.7717/peerj.16318. eCollection 2023.
2
ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates.
Genomics. 2021 Jul;113(4):1855-1866. doi: 10.1016/j.ygeno.2021.04.026. Epub 2021 Apr 18.
3
From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
J Bioinform Comput Biol. 2013 Feb;11(1):1340004. doi: 10.1142/S0219720013400040. Epub 2013 Jan 16.
4
A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
Bioinformatics. 2015 Jun 15;31(12):1889-96. doi: 10.1093/bioinformatics/btv094. Epub 2015 Feb 13.
5
xcore: an R package for inference of gene expression regulators.
BMC Bioinformatics. 2023 Jan 11;24(1):14. doi: 10.1186/s12859-022-05084-0.
6
Target analysis by integration of transcriptome and ChIP-seq data with BETA.
Nat Protoc. 2013 Dec;8(12):2502-15. doi: 10.1038/nprot.2013.150. Epub 2013 Nov 21.
7
Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome.
Genome Biol. 2022 Jun 10;23(1):126. doi: 10.1186/s13059-022-02690-2.
9
MotifGenie: a Python application for searching transcription factor binding sequences using ChIP-Seq datasets.
Bioinformatics. 2021 Nov 18;37(22):4238-4239. doi: 10.1093/bioinformatics/btab379.
10

本文引用的文献

1
Integrating binding and expression data to predict transcription factors combined function.
BMC Genomics. 2020 Sep 7;21(1):610. doi: 10.1186/s12864-020-06977-1.
2
Target analysis by integration of transcriptome and ChIP-seq data with BETA.
Nat Protoc. 2013 Dec;8(12):2502-15. doi: 10.1038/nprot.2013.150. Epub 2013 Nov 21.
3
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.
Nature. 2011 May 19;473(7347):343-8. doi: 10.1038/nature10066. Epub 2011 Apr 13.
4
On the detection and refinement of transcription factor binding sites using ChIP-Seq data.
Nucleic Acids Res. 2010 Apr;38(7):2154-67. doi: 10.1093/nar/gkp1180. Epub 2010 Jan 6.
5
Predicting functionality of protein-DNA interactions by integrating diverse evidence.
Bioinformatics. 2009 Jun 15;25(12):i137-44. doi: 10.1093/bioinformatics/btp213.
7
Genome-wide mapping of in vivo protein-DNA interactions.
Science. 2007 Jun 8;316(5830):1497-502. doi: 10.1126/science.1141319. Epub 2007 May 31.
8
Genome-wide analysis of estrogen receptor binding sites.
Nat Genet. 2006 Nov;38(11):1289-97. doi: 10.1038/ng1901. Epub 2006 Oct 1.
9
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. doi: 10.1073/pnas.0506580102. Epub 2005 Sep 30.
10
Transcription factors: bound to activate or repress.
Trends Biochem Sci. 2001 Apr;26(4):211-3. doi: 10.1016/s0968-0004(01)01812-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验