Suppr超能文献

用于碲化钼场效应晶体管的自组装单分子层掺杂:克服过渡金属二硫属化物中的PN掺杂挑战

Self-Assembled Monolayer Doping for MoTe Field-Effect Transistors: Overcoming PN Doping Challenges in Transition Metal Dichalcogenides.

作者信息

Lee Dong Hyun, Rabeel Muhammad, Han Youngmin, Kim Honggyun, Khan Muhammad Farooq, Kim Deok-Kee, Yoo Hocheon

机构信息

Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea.

Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.

出版信息

ACS Appl Mater Interfaces. 2023 Oct 25. doi: 10.1021/acsami.3c11430.

Abstract

Transition metal dichalcogenides (TMDs) have gained significant attention as next-generation semiconductor materials that could potentially overcome the integration limits of silicon-based electronic devices. However, a challenge in utilizing TMDs as semiconductors is the lack of an established PN doping method to effectively control their electrical properties, unlike those of silicon-based semiconductors. Conventional PN doping methods, such as ion implantation, can induce lattice damage in TMDs. Thus, chemical doping methods that can control the Schottky barrier while minimizing lattice damage are desirable. Here, we focus on the molybdenum ditelluride (2H-MoTe), which has a hexagonal phase and exhibits ambipolar field-effect transistor (FET) properties due to its direct band gap of 1.1 eV, enabling concurrent transport of electrons and holes. We demonstrate the fabrication of p- or n-type unipolar FETs in ambipolar MoTe FETs using self-assembled monolayers (SAMs) as chemical dopants. Specifically, we employ 1,1,2,2 perfluorooctyltriethoxysilane and (3-aminopropyl)triethoxysilane as SAMs for chemical doping. The selective SAMs effectively increase the hole and electron charge transport capabilities in MoTe FETs by 18.4- and 4.6-fold, respectively, due to the dipole effect of the SAMs. Furthermore, the Raman shift of MoTe by SAM coating confirms the successful p- and n-type doping. Finally, we demonstrate the fabrication of complementary inverters using SAMs-doped MoTe FETs, which exhibit clear full-swing capability compared to undoped complementary inverters.

摘要

过渡金属二硫属化物(TMDs)作为下一代半导体材料已引起广泛关注,有望克服硅基电子器件的集成限制。然而,与硅基半导体不同,将TMDs用作半导体面临的一个挑战是缺乏成熟的PN掺杂方法来有效控制其电学性质。传统的PN掺杂方法,如离子注入,会在TMDs中引起晶格损伤。因此,需要能够控制肖特基势垒同时将晶格损伤降至最低的化学掺杂方法。在此,我们重点研究二碲化钼(2H-MoTe),它具有六方相,因其1.1 eV的直接带隙而表现出双极性场效应晶体管(FET)特性,能够同时传输电子和空穴。我们展示了使用自组装单分子层(SAMs)作为化学掺杂剂在双极性MoTe FET中制造p型或n型单极FET。具体而言,我们使用1,1,2,2-全氟辛基三乙氧基硅烷和(3-氨丙基)三乙氧基硅烷作为化学掺杂的SAMs。由于SAMs的偶极效应,选择性SAMs分别有效地将MoTe FET中的空穴和电子电荷传输能力提高了18.4倍和4.6倍。此外,通过SAM涂层对MoTe的拉曼位移证实了成功的p型和n型掺杂。最后,我们展示了使用SAMs掺杂的MoTe FET制造互补反相器,与未掺杂的互补反相器相比,其具有明显的全摆幅能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验