Suppr超能文献

基于图学习的区块链数据挖掘:一项综述。

Blockchain Data Mining With Graph Learning: A Survey.

作者信息

Qi Yuxin, Wu Jun, Xu Hansong, Guizani Mohsen

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):729-748. doi: 10.1109/TPAMI.2023.3327404. Epub 2024 Jan 8.

Abstract

Blockchain data mining has the potential to reveal the operational status and behavioral patterns of anonymous participants in blockchain systems, thus providing valuable insights into system operation and participant behavior. However, traditional blockchain analysis methods suffer from the problems of being unable to handle the data due to its large volume and complex structure. With powerful computing and analysis capabilities, graph learning can solve the current problems through handling each node's features and linkage relationships separately and exploring the implicit properties of data from a graph perspective. This paper systematically reviews the blockchain data mining tasks based on graph learning approaches. First, we investigate the blockchain data acquisition method, integrate the currently available data analysis tools, and divide the sampling method into rule-based and cluster-based techniques. Second, we classify the graph construction into transaction-based blockchain and account-based methods, and comprehensively analyze the existing blockchain feature extraction methods. Third, we compare the existing graph learning algorithms on blockchain and classify them into traditional machine learning-based, graph representation-based, and graph deep learning-based methods. Finally, we propose future research directions and open issues which are promising to address.

摘要

区块链数据挖掘有潜力揭示区块链系统中匿名参与者的运行状态和行为模式,从而为系统运行和参与者行为提供有价值的见解。然而,传统的区块链分析方法存在因数据量庞大和结构复杂而无法处理数据的问题。凭借强大的计算和分析能力,图学习可以通过分别处理每个节点的特征和链接关系,并从图的角度探索数据的隐含属性来解决当前问题。本文系统地综述了基于图学习方法的区块链数据挖掘任务。首先,我们研究区块链数据获取方法,整合当前可用的数据分析工具,并将采样方法分为基于规则和基于聚类的技术。其次,我们将图构建分为基于交易的区块链方法和基于账户的方法,并全面分析现有的区块链特征提取方法。第三,我们比较了现有的区块链图学习算法,并将它们分为基于传统机器学习的、基于图表示的和基于图深度学习的方法。最后,我们提出了未来有希望解决的研究方向和开放问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验