Suppr超能文献

使用GeoChron可视化大规模空间时间序列。

Visualizing Large-Scale Spatial Time Series with GeoChron.

作者信息

Deng Zikun, Chen Shifu, Schreck Tobias, Deng Dazhen, Tang Tan, Xu Mingliang, Weng Di, Wu Yingcai

出版信息

IEEE Trans Vis Comput Graph. 2024 Jan;30(1):1194-1204. doi: 10.1109/TVCG.2023.3327162. Epub 2023 Dec 25.

Abstract

In geo-related fields such as urban informatics, atmospheric science, and geography, large-scale spatial time (ST) series (i.e., geo-referred time series) are collected for monitoring and understanding important spatiotemporal phenomena. ST series visualization is an effective means of understanding the data and reviewing spatiotemporal phenomena, which is a prerequisite for in-depth data analysis. However, visualizing these series is challenging due to their large scales, inherent dynamics, and spatiotemporal nature. In this study, we introduce the notion of patterns of evolution in ST series. Each evolution pattern is characterized by 1) a set of ST series that are close in space and 2) a time period when the trends of these ST series are correlated. We then leverage Storyline techniques by considering an analogy between evolution patterns and sessions, and finally design a novel visualization called GeoChron, which is capable of visualizing large-scale ST series in an evolution pattern-aware and narrative-preserving manner. GeoChron includes a mining framework to extract evolution patterns and two-level visualizations to enhance its visual scalability. We evaluate GeoChron with two case studies, an informal user study, an ablation study, parameter analysis, and running time analysis.

摘要

在城市信息学、大气科学和地理学等与地理相关的领域中,会收集大规模空间时间(ST)序列(即地理参考时间序列),用于监测和理解重要的时空现象。ST序列可视化是理解数据和审视时空现象的有效手段,是深入数据分析的先决条件。然而,由于这些序列规模庞大、具有内在动态性和时空特性,对其进行可视化具有挑战性。在本研究中,我们引入了ST序列演变模式的概念。每个演变模式的特征在于:1)一组在空间上相近的ST序列,以及2)这些ST序列的趋势相关的时间段。然后,我们通过考虑演变模式与会话之间的类比来利用故事线技术,最后设计了一种名为GeoChron的新颖可视化方法,它能够以一种感知演变模式且保留叙事性的方式对大规模ST序列进行可视化。GeoChron包括一个用于提取演变模式的挖掘框架和两级可视化,以增强其视觉可扩展性。我们通过两个案例研究、一项非正式用户研究、一项消融研究、参数分析和运行时间分析对GeoChron进行评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验