Portugal Ivens, Alencar Paulo, Cowan Donald
School of Computer Science, University of Waterloo, Waterloo, Canada.
Sci Rep. 2024 Sep 27;14(1):22137. doi: 10.1038/s41598-024-72504-x.
Analysis on spatial-temporal data has several benefits that range from an improved traffic network in a city to increased earnings for drivers and ridesharing companies. A common analysis technique is clustering. However, most clustering techniques consider a constrained representation of clusters that is limited to a single timestamp. Evolving clusters exist through several timestamps and interact with other spatial-temporal objects or clusters, having cluster relationships. When many evolving clusters exist for analysis, a graph can be used to represent cluster evolution. In this article, we propose a framework for graph-based cluster evolution representation and analysis. The framework represents cluster structure and relationships as well as provides a graph representation of cluster evolution for analysis. Evaluation is done in three case studies with spatial-temporal data about taxis that can identify important phenomena or trends in movements in a city for traffic improvement.
对时空数据进行分析有诸多益处,从改善城市交通网络到提高司机和拼车公司的收入。一种常见的分析技术是聚类。然而,大多数聚类技术考虑的是聚类的受限表示,该表示仅限于单个时间戳。演化聚类存在于多个时间戳中,并与其他时空对象或聚类相互作用,具有聚类关系。当存在许多演化聚类以供分析时,可以使用图来表示聚类演化。在本文中,我们提出了一个基于图的聚类演化表示与分析框架。该框架表示聚类结构和关系,并提供聚类演化的图表示以供分析。在三个案例研究中使用关于出租车的时空数据进行评估,这些数据可以识别城市交通中重要的现象或移动趋势,以改善交通状况。