Suppr超能文献

一种基于图的时空聚类演化表示与分析框架。

A framework for spatial-temporal cluster evolution representation and analysis based on graphs.

作者信息

Portugal Ivens, Alencar Paulo, Cowan Donald

机构信息

School of Computer Science, University of Waterloo, Waterloo, Canada.

出版信息

Sci Rep. 2024 Sep 27;14(1):22137. doi: 10.1038/s41598-024-72504-x.

Abstract

Analysis on spatial-temporal data has several benefits that range from an improved traffic network in a city to increased earnings for drivers and ridesharing companies. A common analysis technique is clustering. However, most clustering techniques consider a constrained representation of clusters that is limited to a single timestamp. Evolving clusters exist through several timestamps and interact with other spatial-temporal objects or clusters, having cluster relationships. When many evolving clusters exist for analysis, a graph can be used to represent cluster evolution. In this article, we propose a framework for graph-based cluster evolution representation and analysis. The framework represents cluster structure and relationships as well as provides a graph representation of cluster evolution for analysis. Evaluation is done in three case studies with spatial-temporal data about taxis that can identify important phenomena or trends in movements in a city for traffic improvement.

摘要

对时空数据进行分析有诸多益处,从改善城市交通网络到提高司机和拼车公司的收入。一种常见的分析技术是聚类。然而,大多数聚类技术考虑的是聚类的受限表示,该表示仅限于单个时间戳。演化聚类存在于多个时间戳中,并与其他时空对象或聚类相互作用,具有聚类关系。当存在许多演化聚类以供分析时,可以使用图来表示聚类演化。在本文中,我们提出了一个基于图的聚类演化表示与分析框架。该框架表示聚类结构和关系,并提供聚类演化的图表示以供分析。在三个案例研究中使用关于出租车的时空数据进行评估,这些数据可以识别城市交通中重要的现象或移动趋势,以改善交通状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55f0/11436857/c29bf3d417be/41598_2024_72504_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验