Suppr超能文献

用于动态实时体全局光照的光子场网络

Photon Field Networks for Dynamic Real-Time Volumetric Global Illumination.

作者信息

Bauer David, Wu Qi, Ma Kwan-Liu

出版信息

IEEE Trans Vis Comput Graph. 2024 Jan;30(1):975-985. doi: 10.1109/TVCG.2023.3327107. Epub 2023 Dec 27.

Abstract

Volume data is commonly found in many scientific disciplines, like medicine, physics, and biology. Experts rely on robust scientific visualization techniques to extract valuable insights from the data. Recent years have shown path tracing to be the preferred approach for volumetric rendering, given its high levels of realism. However, real-time volumetric path tracing often suffers from stochastic noise and long convergence times, limiting interactive exploration. In this paper, we present a novel method to enable real-time global illumination for volume data visualization. We develop Photon Field Networks-a phase-function-aware, multi-light neural representation of indirect volumetric global illumination. The fields are trained on multi-phase photon caches that we compute a priori. Training can be done within seconds, after which the fields can be used in various rendering tasks. To showcase their potential, we develop a custom neural path tracer, with which our photon fields achieve interactive framerates even on large datasets. We conduct in-depth evaluations of the method's performance, including visual quality, stochastic noise, inference and rendering speeds, and accuracy regarding illumination and phase function awareness. Results are compared to ray marching, path tracing and photon mapping. Our findings show that Photon Field Networks can faithfully represent indirect global illumination within the boundaries of the trained phase spectrum while exhibiting less stochastic noise and rendering at a significantly faster rate than traditional methods.

摘要

体数据在许多科学学科中普遍存在,如医学、物理学和生物学。专家们依靠强大的科学可视化技术从数据中提取有价值的见解。近年来,鉴于其高度的真实感,路径追踪已成为体绘制的首选方法。然而,实时体路径追踪经常受到随机噪声和长收敛时间的困扰,限制了交互式探索。在本文中,我们提出了一种新的方法,以实现用于体数据可视化的实时全局光照。我们开发了光子场网络——一种感知相位函数的间接体全局光照的多光源神经表示。这些场在我们预先计算的多相位光子缓存上进行训练。训练可以在几秒钟内完成,之后这些场可用于各种渲染任务。为了展示它们的潜力,我们开发了一个定制的神经路径追踪器,通过它我们的光子场即使在大型数据集上也能实现交互式帧率。我们对该方法的性能进行了深入评估,包括视觉质量、随机噪声、推理和渲染速度,以及关于光照和相位函数感知的准确性。结果与光线步进、路径追踪和光子映射进行了比较。我们的研究结果表明,光子场网络可以在训练相位谱的范围内忠实地表示间接全局光照,同时表现出比传统方法更少的随机噪声,并且渲染速度明显更快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验