Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.
Department of Information Systems, Chi Mei Medical Center, Tainan, Taiwan.
Acad Emerg Med. 2024 Feb;31(2):149-155. doi: 10.1111/acem.14824. Epub 2023 Nov 23.
Artificial intelligence (AI) prediction is increasingly used for decision making in health care, but its application for adverse outcomes in emergency department (ED) patients with acute pancreatitis (AP) is not well understood. This study aimed to clarify this aspect.
Data from 8274 ED patients with AP in three hospitals from 2009 to 2018 were analyzed. Demographic data, comorbidities, laboratory results, and adverse outcomes were included. Six algorithms were evaluated, and the one with the highest area under the curve (AUC) was implemented into the hospital information system (HIS) for real-time prediction. Predictive accuracy was compared between the AI model and Bedside Index for Severity in Acute Pancreatitis (BISAP).
The mean ± SD age was 56.1 ± 16.7 years, with 67.7% being male. The AI model was successfully implemented in the HIS, with Light Gradient Boosting Machine (LightGBM) showing the highest AUC for sepsis (AUC 0.961) and intensive care unit (ICU) admission (AUC 0.973), and eXtreme Gradient Boosting (XGBoost) showing the highest AUC for mortality (AUC 0.975). Compared to BISAP, the AI model had superior AUC for sepsis (BISAP 0.785), ICU admission (BISAP 0.778), and mortality (BISAP 0.817).
The first real-time AI prediction model implemented in the HIS for predicting adverse outcomes in ED patients with AP shows favorable initial results. However, further external validation is needed to ensure its reliability and accuracy.
人工智能(AI)预测在医疗保健领域越来越多地用于决策,但它在急诊科(ED)急性胰腺炎(AP)患者不良结局中的应用尚不清楚。本研究旨在阐明这一方面。
分析了 2009 年至 2018 年三家医院 8274 例 ED 急性胰腺炎患者的数据。纳入人口统计学数据、合并症、实验室结果和不良结局。评估了六种算法,并将具有最高曲线下面积(AUC)的算法实施到医院信息系统(HIS)中进行实时预测。比较 AI 模型和床边急性胰腺炎严重程度指数(BISAP)的预测准确性。
平均年龄为 56.1±16.7 岁,其中 67.7%为男性。AI 模型成功地在 HIS 中实施,Light Gradient Boosting Machine(LightGBM)对脓毒症(AUC 0.961)和重症监护病房(ICU)入院(AUC 0.973)的 AUC 最高,而 eXtreme Gradient Boosting(XGBoost)对死亡率(AUC 0.975)的 AUC 最高。与 BISAP 相比,AI 模型在脓毒症(BISAP 0.785)、ICU 入院(BISAP 0.778)和死亡率(BISAP 0.817)方面的 AUC 更高。
首次在 HIS 中实施用于预测 ED 急性胰腺炎患者不良结局的实时 AI 预测模型显示出良好的初步结果。然而,需要进一步的外部验证以确保其可靠性和准确性。