López Gordo Sandra, Ramirez-Maldonado Elena, Fernandez-Planas Maria Teresa, Bombuy Ernest, Memba Robert, Jorba Rosa
General and Digestive Surgery Department, Maresme Health Consortium, 08304 Mataro, Spain.
Unit of Human Anatomy and Embriology, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
Medicina (Kaunas). 2025 Mar 29;61(4):629. doi: 10.3390/medicina61040629.
Acute pancreatitis (AP) presents a significant clinical challenge due to its wide range of severity, from mild cases to life-threatening complications such as severe acute pancreatitis (SAP), necrosis, and multi-organ failure. Traditional scoring systems, such as Ranson and BISAP, offer foundational tools for risk stratification but often lack early precision. This review aims to explore the transformative role of artificial intelligence (AI) and machine learning (ML) in AP management, focusing on their applications in diagnosis, severity prediction, complication management, and treatment optimization. A comprehensive analysis of recent studies was conducted, highlighting ML models such as XGBoost, neural networks, and multimodal approaches. These models integrate clinical, laboratory, and imaging data, including radiomics features, and are useful in diagnostic and prognostic accuracy in AP. Special attention was given to models addressing SAP, complications like acute kidney injury and acute respiratory distress syndrome, mortality, and recurrence. AI-based models achieved higher AUC values than traditional models in predicting acute pancreatitis outcomes. XGBoost reached an AUC of 0.93 for early SAP prediction, higher than BISAP (AUC 0.74) and APACHE II (AUC 0.81). PrismSAP, integrating multimodal data, achieved the highest AUC of 0.916. AI models also demonstrated superior accuracy in mortality prediction (AUC 0.975) and ARDS detection (AUC 0.891) AI and ML represent a transformative advance in AP management, facilitating personalized treatment, early risk stratification, and allowing resource utilization to be optimized. By addressing challenges such as model generalizability, ethical considerations, and clinical adoption, AI has the potential to significantly improve patient outcomes and redefine AP care standards globally.
急性胰腺炎(AP)由于其严重程度范围广泛,从轻症病例到危及生命的并发症,如重症急性胰腺炎(SAP)、坏死和多器官功能衰竭,带来了重大的临床挑战。传统的评分系统,如兰森(Ranson)和BISAP,为风险分层提供了基础工具,但往往缺乏早期精准度。本综述旨在探讨人工智能(AI)和机器学习(ML)在AP管理中的变革性作用,重点关注它们在诊断、严重程度预测、并发症管理和治疗优化方面的应用。对近期研究进行了全面分析,突出了如XGBoost、神经网络和多模态方法等机器学习模型。这些模型整合了临床、实验室和影像学数据,包括放射组学特征,在AP的诊断和预后准确性方面很有用。特别关注了针对SAP、急性肾损伤和急性呼吸窘迫综合征等并发症、死亡率和复发情况的模型。基于AI的模型在预测急性胰腺炎结局方面比传统模型获得了更高的曲线下面积(AUC)值。XGBoost在早期SAP预测中达到了0.93的AUC,高于BISAP(AUC 0.74)和急性生理与慢性健康状况评分系统II(APACHE II,AUC 0.81)。整合多模态数据的PrismSAP实现了最高的0.916的AUC。AI模型在死亡率预测(AUC 0.975)和急性呼吸窘迫综合征检测(AUC 0.891)方面也表现出更高的准确性。AI和ML代表了AP管理中的变革性进展,有助于实现个性化治疗、早期风险分层,并优化资源利用。通过应对模型可推广性、伦理考量和临床应用等挑战,AI有潜力显著改善患者结局,并在全球重新定义AP护理标准。