Suppr超能文献

增强淋巴细胞浸润的配体-受体相互作用失活导致黑色素瘤对免疫检查点阻断产生耐药性。

Deactivation of ligand-receptor interactions enhancing lymphocyte infiltration drives melanoma resistance to Immune Checkpoint Blockade.

作者信息

Sahni Sahil, Wang Binbin, Wu Di, Dhruba Saugato Rahman, Nagy Matthew, Patkar Sushant, Ferreira Ingrid, Wang Kun, Ruppin Eytan

机构信息

Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA.

Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA.

出版信息

bioRxiv. 2023 Sep 22:2023.09.20.558683. doi: 10.1101/2023.09.20.558683.

Abstract

Immune checkpoint blockade (ICB) is a promising cancer therapy; however, resistance often develops. To learn more about ICB resistance mechanisms, we developed IRIS (mmunotherapy esistance cell-cell nteraction canner), a machine learning model aimed at identifying candidate ligand-receptor interactions (LRI) that are likely to mediate ICB resistance in the tumor microenvironment (TME). We developed and applied IRIS to identify resistance-mediating cell-type-specific ligand-receptor interactions by analyzing deconvolved transcriptomics data of the five largest melanoma ICB therapy cohorts. This analysis identifies a set of specific ligand-receptor pairs that are deactivated as tumors develop resistance, which we refer to as . Quite strikingly, the activity of these RDIs in pre-treatment samples offers a markedly stronger predictive signal for ICB therapy response compared to those that are activated as tumors develop resistance. Their predictive accuracy surpasses the state-of-the-art published transcriptomics biomarker signatures across an array of melanoma ICB datasets. Many of these RDIs are involved in chemokine signaling. Indeed, we further validate on an independent large melanoma patient cohort that their activity is associated with CD8+ T cell infiltration and enriched in hot/brisk tumors. Taken together, this study presents a new strongly predictive ICB response biomarker signature, showing that following ICB treatment resistant tumors turn inhibit lymphocyte infiltration by deactivating specific key ligand-receptor interactions.

摘要

免疫检查点阻断(ICB)是一种很有前景的癌症治疗方法;然而,耐药性往往会出现。为了更深入了解ICB耐药机制,我们开发了IRIS(免疫治疗耐药细胞间相互作用扫描器),这是一种机器学习模型,旨在识别可能在肿瘤微环境(TME)中介导ICB耐药性的候选配体-受体相互作用(LRI)。我们开发并应用IRIS,通过分析五个最大的黑色素瘤ICB治疗队列的去卷积转录组学数据,来识别介导耐药性的细胞类型特异性配体-受体相互作用。该分析确定了一组特定的配体-受体对,随着肿瘤产生耐药性它们会失活,我们将其称为。非常引人注目的是,与肿瘤产生耐药性时被激活的那些相比,这些RDI在治疗前样本中的活性为ICB治疗反应提供了明显更强的预测信号。它们的预测准确性超过了一系列黑色素瘤ICB数据集中已发表的最先进的转录组学生物标志物特征。这些RDI中的许多都参与趋化因子信号传导。事实上,我们在一个独立的大型黑色素瘤患者队列中进一步验证,它们的活性与CD8 + T细胞浸润相关,并且在热/活跃肿瘤中富集。综上所述,本研究提出了一种新的强预测性ICB反应生物标志物特征,表明在ICB治疗后,耐药肿瘤通过使特定关键配体-受体相互作用失活来抑制淋巴细胞浸润。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f88/10602042/64d6b7a89d42/nihpp-2023.09.20.558683v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验