Suppr超能文献

机器学习模型揭示了配体-受体相互作用的广泛下调,这增强了对免疫检查点阻断产生耐药性的黑色素瘤中的淋巴细胞浸润。

A machine learning model reveals expansive downregulation of ligand-receptor interactions that enhance lymphocyte infiltration in melanoma with developed resistance to immune checkpoint blockade.

机构信息

Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.

Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.

出版信息

Nat Commun. 2024 Oct 14;15(1):8867. doi: 10.1038/s41467-024-52555-4.

Abstract

Immune checkpoint blockade (ICB) is a promising cancer therapy; however, resistance frequently develops. To explore ICB resistance mechanisms, we develop Immunotherapy Resistance cell-cell Interaction Scanner (IRIS), a machine learning model aimed at identifying cell-type-specific tumor microenvironment ligand-receptor interactions relevant to ICB resistance. Applying IRIS to deconvolved transcriptomics data of the five largest melanoma ICB cohorts, we identify specific downregulated interactions, termed resistance downregulated interactions (RDI), as tumors develop resistance. These RDIs often involve chemokine signaling and offer a stronger predictive signal for ICB response compared to upregulated interactions or the state-of-the-art published transcriptomics biomarkers. Validation across multiple independent melanoma patient cohorts and modalities confirms that RDI activity is associated with CD8 + T cell infiltration and highly manifested in hot/brisk tumors. This study presents a strongly predictive ICB response biomarker, highlighting the key role of downregulating chemotaxis-associated ligand-receptor interactions in inhibiting lymphocyte infiltration in resistant tumors.

摘要

免疫检查点阻断 (ICB) 是一种很有前途的癌症治疗方法;然而,耐药性经常会出现。为了探索 ICB 耐药机制,我们开发了免疫治疗耐药细胞-细胞相互作用扫描器 (IRIS),这是一种机器学习模型,旨在识别与 ICB 耐药相关的特定于细胞类型的肿瘤微环境配体-受体相互作用。将 IRIS 应用于五个最大的黑色素瘤 ICB 队列的去卷积转录组学数据中,我们确定了特定的下调相互作用,称为耐药性下调相互作用 (RDI),因为肿瘤产生耐药性。这些 RDI 通常涉及趋化因子信号,并且与上调相互作用或最先进的发表的转录组学生物标志物相比,提供了更强的 ICB 反应预测信号。在多个独立的黑色素瘤患者队列和模式中进行验证证实,RDI 活性与 CD8+T 细胞浸润相关,并且在热/活跃肿瘤中高度表现。这项研究提出了一个具有强预测性的 ICB 反应生物标志物,强调了下调趋化相关配体-受体相互作用在抑制耐药肿瘤中淋巴细胞浸润中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c84a/11473774/2ea263688734/41467_2024_52555_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验