Ghoniem Rania M, Wilberforce Tabbi, Rezk Hegazy, As'ad Samer, Alahmer Ali
Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
Department of Engineering, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London WC2R 2LS, UK.
Membranes (Basel). 2023 Sep 28;13(10):817. doi: 10.3390/membranes13100817.
The adoption of Proton Exchange Membrane (PEM) fuel cells (FCs) is of great significance in diverse industries, as they provide high efficiency and environmental advantages, enabling the transition to sustainable and clean energy solutions. This study aims to enhance the output power of PEM-FCs by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) and modern optimization algorithms. Initially, an ANFIS model is developed based on empirical data to simulate the output power density of the PEM-FC, considering factors such as pressure, relative humidity, and membrane compression. The Salp swarm algorithm (SSA) is subsequently utilized to determine the optimal values of the input control parameters. The three input control parameters of the PEM-FC are treated as decision variables during the optimization process, with the objective to maximize the output power density. During the modeling phase, the training and testing data exhibit root mean square error (RMSE) values of 0.0003 and 24.5, respectively. The coefficient of determination values for training and testing are 1.0 and 0.9598, respectively, indicating the successfulness of the modeling process. The reliability of SSA is further validated by comparing its outcomes with those obtained from particle swarm optimization (PSO), evolutionary optimization (EO), and grey wolf optimizer (GWO). Among these methods, SSA achieves the highest average power density of 716.63 mW/cm, followed by GWO at 709.95 mW/cm. The lowest average power density of 695.27 mW/cm is obtained using PSO.
采用质子交换膜(PEM)燃料电池在众多行业中具有重要意义,因为它们具有高效率和环境优势,能够向可持续和清洁能源解决方案转型。本研究旨在通过采用自适应神经模糊推理系统(ANFIS)和现代优化算法来提高PEM燃料电池的输出功率。首先,基于经验数据开发了一个ANFIS模型,以模拟PEM燃料电池的输出功率密度,考虑压力、相对湿度和膜压缩等因素。随后利用鹈鹕群算法(SSA)来确定输入控制参数的最优值。在优化过程中,将PEM燃料电池的三个输入控制参数作为决策变量,目标是使输出功率密度最大化。在建模阶段,训练数据和测试数据的均方根误差(RMSE)值分别为0.0003和24.5。训练和测试的决定系数值分别为1.0和0.9598,表明建模过程是成功的。通过将SSA的结果与粒子群优化(PSO)、进化优化(EO)和灰狼优化器(GWO)的结果进行比较,进一步验证了SSA的可靠性。在这些方法中,SSA实现了最高的平均功率密度716.63 mW/cm,其次是GWO,为709.95 mW/cm。使用PSO获得的最低平均功率密度为695.27 mW/cm。