Ben Rayana Tesnim, Wild Pascal, Debatisse Amélie, Jouannique Valérie, Sakthithasan Kirushanthi, Suarez Guillaume, Guseva Canu Irina
Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland.
Autonomous Parisian Transportation Administration (RATP), 75012 Paris, France.
Toxics. 2023 Oct 2;11(10):836. doi: 10.3390/toxics11100836.
Health effects after long-term exposure to subway particulate matter (PM) remain unknown due to the lack of individual PM exposure data. This study aimed to apply the job exposure matrix (JEM) approach to retrospectively assess occupational exposure to PM in the Parisian subway.
Job, the line and sector of the transport network, as well as calendar period were four JEM dimensions. For each combination of these dimensions, we generated statistical models to estimate the annual average PM concentration using data from an exhaustive inventory of the PM measurement campaigns conducted between 2004 and 2020 in the Parisian subway and historical data from the Parisian air pollution monitoring network. The resulting JEM and its exposure estimates were critically examined by experts using the uncertainty analysis framework.
The resulting JEM allows for the assignment of the estimated annual PM concentration to three types of professionals working in the subway: locomotive operators, station agents, and security guards. The estimates' precision and validity depend on the amount and quality of PM measurement data used in the job-, line-, and sector-specific models. Models using large amounts of personal exposure measurement data produced rather robust exposure estimates compared to models with lacunary data (i.e., in security guards). The analysis of uncertainty around the exposure estimates allows for the identification of the sources of uncertainty and parameters to be addressed in the future in order to refine and/or improve the JEM.
The JEM approach seems relevant for the retrospective exposure assessment of subway workers. When applied to available data on PM, it allows for the estimation of this exposure in locomotive operators and station agents with an acceptable validity. Conversely, for security guards, the current estimates have insufficient validity to recommend their use in an epidemiological study. Therefore, the current JEM should be considered as a valid prototype, which shall be further improved using more robust measurements for some jobs. This JEM can also be further refined by considering additional exposure determinants.
由于缺乏个人颗粒物暴露数据,长期暴露于地铁颗粒物(PM)后的健康影响尚不清楚。本研究旨在应用工作暴露矩阵(JEM)方法回顾性评估巴黎地铁中职业性PM暴露情况。
工作、运输网络的线路和区域以及时间段是JEM的四个维度。对于这些维度的每种组合,我们使用2004年至2020年在巴黎地铁进行的PM测量活动详尽清单中的数据以及巴黎空气污染监测网络的历史数据,生成统计模型来估计年平均PM浓度。专家使用不确定性分析框架对所得的JEM及其暴露估计值进行了严格审查。
所得的JEM能够将估计的年PM浓度分配给在地铁工作的三类专业人员:机车操作员、车站工作人员和保安。估计值的精度和有效性取决于特定工作、线路和区域模型中使用的PM测量数据的数量和质量。与使用有缺失数据的模型(即保安人员的模型)相比,使用大量个人暴露测量数据的模型产生的暴露估计更为可靠。对暴露估计周围不确定性的分析有助于识别不确定性来源以及未来需要解决的参数,以便完善和/或改进JEM。
JEM方法似乎适用于地铁工作人员的回顾性暴露评估。当应用于PM的现有数据时,它能够以可接受的有效性估计机车操作员和车站工作人员的这种暴露。相反,对于保安人员,当前的估计有效性不足,无法推荐在流行病学研究中使用。因此,当前的JEM应被视为一个有效的原型,应使用针对某些工作的更可靠测量方法进一步改进。通过考虑其他暴露决定因素,这个JEM也可以进一步完善。