Gu Ming, Wang Jiayu, Song Zihao, Li Chengming, Wang Weikun, Wang Anbang, Huang Yaqin
Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China.
Research Institute of Chemical Defense, Beijing 100083, China.
ACS Appl Mater Interfaces. 2023 Oct 27. doi: 10.1021/acsami.3c12690.
Lithium-sulfur (Li-S) batteries hold great promise as next-generation high-energy storage devices owing to the high theoretical specific capacity of sulfur, but polysulfide shuttling and lithium dendrite growth remain key challenges limiting cycling life. In this work, we propose a polyacrylonitrile-derived asymmetric (PDA) separator to enhance Li-S battery performance by accelerating sulfur redox kinetics and guiding lithium plating and stripping. A PDA separator was constructed from two layers: the cathode-facing side consists of polyacrylonitrile nanofibers carbonized at 800 °C and doped with titanium nitride, which can achieve rapid polysulfide conversion via electrocatalysis to suppress their shuttling; the anode-facing side consists of polyacrylonitrile oxidized at 280 °C, on which the abundant electronegative groups guide uniform lithium ion plating and stripping. Li-S batteries assembled with the PDA separator exhibited enhanced rate performance, cycling stability, and sulfur utilization, retaining 426 mA h g capacity at 1 C over 1000 cycles and 632 mA h g at 4 C over 200 cycles. Attractively, the PDA separator showed high thermal stability, which could mitigate the risk of internal short circuits and thermal runaway. This work demonstrates an original path to addressing the most critical issues with Li-S batteries.
锂硫(Li-S)电池因其硫的高理论比容量而有望成为下一代高能量存储设备,但多硫化物穿梭和锂枝晶生长仍然是限制循环寿命的关键挑战。在这项工作中,我们提出了一种聚丙烯腈衍生的不对称(PDA)隔膜,通过加速硫氧化还原动力学以及引导锂的沉积和剥离来提高锂硫电池的性能。一个PDA隔膜由两层组成:面向阴极的一侧由在800℃碳化并掺杂氮化钛的聚丙烯腈纳米纤维构成,其可通过电催化实现快速的多硫化物转化以抑制其穿梭;面向阳极的一侧由在280℃氧化的聚丙烯腈构成,其上大量的电负性基团引导锂离子均匀地沉积和剥离。采用PDA隔膜组装的锂硫电池表现出增强的倍率性能、循环稳定性和硫利用率,在1 C下1000次循环后保持426 mA h g的容量,在4 C下200次循环后保持632 mA h g的容量。吸引人的是,PDA隔膜表现出高的热稳定性,这可以减轻内部短路和热失控的风险。这项工作展示了一条解决锂硫电池最关键问题的原创途径。