Suppr超能文献

绿色合成纳米材料增强有机相变材料的热动力学行为:模型拟合方法。

Thermo-kinetic behaviour of green synthesized nanomaterial enhanced organic phase change material: Model fitting approach.

机构信息

Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia.

Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia; Center for Global Health Research , Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.

出版信息

J Environ Manage. 2023 Dec 15;348:119439. doi: 10.1016/j.jenvman.2023.119439. Epub 2023 Oct 25.

Abstract

Metal, carbon and conducting polymer nanoparticles are blended with organic phase change materials (PCMs) to enhance the thermal conductivity, heat storage ability, thermal stability and optical property. However, the existing nanoparticle are expensive and need to be handle with high caution during operation as well during disposal owing to its toxicity. Subsequently handling of solid waste and the disposal of organic PCM after longevity usage are of utmost concern and are less exposed. Henceforth, the current research presents a new dimension of exploration by green synthesized nanoparticles from a thorny shrub of an invasive weed named Prosopis Juliflora (PJ) which is a agro based solid waste. Subsequently, the research is indented to decide the concentration of green synthesized nanoparticle for effective heat transfer rate of organic PCM (T = 35-40 °C & H = 145 J/g). Furthermore, an in-depth understanding on the kinetic and thermodynamic profile of degradation mechanism involved in disposal of PCM after usage via Coats and Redfern technique is exhibited. Engaging a two-step method, we fuse the green synthesized nanomaterial with PCM to obtain nanocomposite PCM. On experimental evaluation, thermal conductivity of the developed nanocomposite (PCM + PJ) increases by 63.8% (0.282 W/m⋅K to 0.462 W/m⋅K) with 0.8 wt% green synthesized nanomaterial owing to the uniform distribution of nanoparticle within PCM matrix thereby contributing to bridging thermal networks. Subsequently, PCM and PCM + PJ nanocomposites are tested using thermogravimetric analyzer at different heating rates (05 °C/min; 10 °C/min; 15 °C/min & 20 °C/min) to analyze the decomposition kinetic reaction. The kinetic and thermodynamic profile of degradation mechanism involved in disposal of PCM and its nanocomposite of PCM + PJ provides insight on thermal parameters to be considered on large scale operation and to understand the complex nature of the chemical reactions. Adopting thirteen different chemical mechanism model under Coats and Redfern method we determine the reaction mechanism; kinetic parameter like activation energy (Ea) & pre-exponential factor (A) and thermodynamic parameter like change in enthalpy (ΔH), change in Gibbs free energy (ΔG) and change in entropy (ΔS). Dispersion of PJ nanomaterial with PCM reduces Ea from 370.82 kJ/mol to 342.54 kJ/mol (7.7% reduction), as the developed nanomaterial is enriched in carbon element and exhibits a catalytic effect for breakdown reaction. Corresponding, value of ΔG for PCM and PCM + PJ sample within heating rates of 05-20 °C/min varies between 168.95 and 41.611 kJ/mol. The current research will unbolt new works with focus on exploring the pyrolysis behaviour of phase change materials and its nanocomposite used for energy storage applications. This work also provides insights on the disposal of PCM which is an organic solid waste. The thermo-kinetic profile will help to investigate and predict the optimum heating rate and temperature range for conversion of micro-scale pyrolysis to commercial scale process.

摘要

金属、碳和导电聚合物纳米粒子与有机相变材料(PCM)混合,以提高导热性、储热能力、热稳定性和光学性能。然而,现有的纳米粒子价格昂贵,在操作过程中以及在处置过程中需要高度谨慎,因为它们具有毒性。随后,固体废弃物的处理以及有机 PCM 长期使用后的处置是最令人关注的问题,而这方面的研究却很少。因此,目前的研究提出了一个新的维度,即从一种名为刺槐(Prosopis Juliflora,PJ)的入侵杂草的多刺灌木中绿色合成纳米粒子,这种杂草是一种农业固体废物。随后,研究旨在确定绿色合成纳米粒子的浓度,以达到有机 PCM 的有效传热率(T=35-40°C,H=145 J/g)。此外,通过 Coats 和 Redfern 技术展示了在使用后处理 PCM 时涉及的降解机制的动力学和热力学特性。我们采用两步法,将绿色合成的纳米材料与 PCM 融合,得到纳米复合 PCM。在实验评估中,由于纳米粒子在 PCM 基质中的均匀分布,开发的纳米复合材料(PCM+PJ)的导热系数增加了 63.8%(0.282 W/m·K 增加到 0.462 W/m·K),从而有助于桥接热网络。随后,在不同的加热速率(05°C/min、10°C/min、15°C/min 和 20°C/min)下,使用热重分析仪对 PCM 和 PCM+PJ 纳米复合材料进行测试,以分析分解动力学反应。PCM 和 PCM+PJ 纳米复合材料的处置降解机制的动力学和热力学特性为大规模操作提供了热参数方面的见解,并有助于理解化学反应的复杂性。我们采用 Coats 和 Redfern 方法中的十三种不同的化学机理模型来确定反应机理;动力学参数如活化能(Ea)和指数前因子(A)以及热力学参数如焓变(ΔH)、吉布斯自由能变(ΔG)和熵变(ΔS)。PJ 纳米材料在 PCM 中的分散将 Ea 从 370.82 kJ/mol 降低到 342.54 kJ/mol(降低了 7.7%),因为开发的纳米材料富含碳元素,并对分解反应表现出催化作用。相应地,在 05-20°C/min 的加热速率下,PCM 和 PCM+PJ 样品的ΔG 值在 168.95 到 41.611 kJ/mol 之间变化。本研究将重点探索相变材料及其用于储能应用的纳米复合材料的热解行为,为相关工作提供新的思路。这项工作还为有机固体废物 PCM 的处理提供了见解。热动力学特性将有助于研究和预测微尺度热解转化为商业规模过程的最佳加热速率和温度范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验