Suppr超能文献

LM-Net:用于医学图像分割的轻量级多尺度网络。

LM-Net: A light-weight and multi-scale network for medical image segmentation.

机构信息

College of Electronic Information, Guangxi Minzu University, Nanning, China.

College of Electronic Information, Guangxi Minzu University, Nanning, China. Electronic address: https://github.com/Asunatan/LM-Net.

出版信息

Comput Biol Med. 2024 Jan;168:107717. doi: 10.1016/j.compbiomed.2023.107717. Epub 2023 Nov 23.

Abstract

Current medical image segmentation approaches have limitations in deeply exploring multi-scale information and effectively combining local detail textures with global contextual semantic information. This results in over-segmentation, under-segmentation, and blurred segmentation boundaries. To tackle these challenges, we explore multi-scale feature representations from different perspectives, proposing a novel, lightweight, and multi-scale architecture (LM-Net) that integrates advantages of both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) to enhance segmentation accuracy. LM-Net employs a lightweight multi-branch module to capture multi-scale features at the same level. Furthermore, we introduce two modules to concurrently capture local detail textures and global semantics with multi-scale features at different levels: the Local Feature Transformer (LFT) and Global Feature Transformer (GFT). The LFT integrates local window self-attention to capture local detail textures, while the GFT leverages global self-attention to capture global contextual semantics. By combining these modules, our model achieves complementarity between local and global representations, alleviating the problem of blurred segmentation boundaries in medical image segmentation. To evaluate the feasibility of LM-Net, extensive experiments have been conducted on three publicly available datasets with different modalities. Our proposed model achieves state-of-the-art results, surpassing previous methods, while only requiring 4.66G FLOPs and 5.4M parameters. These state-of-the-art results on three datasets with different modalities demonstrate the effectiveness and adaptability of our proposed LM-Net for various medical image segmentation tasks.

摘要

目前的医学图像分割方法在深入探索多尺度信息和有效结合局部细节纹理与全局上下文语义信息方面存在局限性。这导致了过度分割、欠分割和分割边界模糊等问题。为了解决这些挑战,我们从不同角度探索多尺度特征表示,提出了一种新颖的、轻量级的多尺度架构(LM-Net),该架构集成了卷积神经网络(CNNs)和视觉Transformer(ViTs)的优势,以提高分割准确性。LM-Net 采用轻量级多分支模块在同一级别捕获多尺度特征。此外,我们引入了两个模块,利用多尺度特征在不同级别上同时捕获局部细节纹理和全局语义:局部特征 Transformer(LFT)和全局特征 Transformer(GFT)。LFT 集成了局部窗口自注意力来捕获局部细节纹理,而 GFT 则利用全局自注意力来捕获全局上下文语义。通过结合这些模块,我们的模型实现了局部和全局表示之间的互补,缓解了医学图像分割中分割边界模糊的问题。为了评估 LM-Net 的可行性,我们在三个具有不同模态的公开数据集上进行了广泛的实验。我们提出的模型在三个具有不同模态的数据集上达到了最先进的结果,超过了之前的方法,同时仅需要 4.66G FLOPs 和 5.4M 参数。这些在三个具有不同模态的数据集上的最先进结果表明,我们提出的 LM-Net 对于各种医学图像分割任务具有有效性和适应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验