Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Anzio Road, Cape Town, 7925, Observatory, South Africa.
Institute for Global Health, UCL, London, UK.
BMC Public Health. 2023 Oct 27;23(1):2119. doi: 10.1186/s12889-023-16995-9.
BACKGROUND: Mathematical models are increasingly used to inform HIV policy and planning. Comparing estimates obtained using different mathematical models can test the robustness of estimates and highlight research gaps. As part of a larger project aiming to determine the optimal allocation of funding for HIV services, in this study we compare projections from five mathematical models of the HIV epidemic in South Africa: EMOD-HIV, Goals, HIV-Synthesis, Optima, and Thembisa. METHODS: The five modelling groups produced estimates of the total population, HIV incidence, HIV prevalence, proportion of people living with HIV who are diagnosed, ART coverage, proportion of those on ART who are virally suppressed, AIDS-related deaths, total deaths, and the proportion of adult males who are circumcised. Estimates were made under a "status quo" scenario for the period 1990 to 2040. For each output variable we assessed the consistency of model estimates by calculating the coefficient of variation and examining the trend over time. RESULTS: For most outputs there was significant inter-model variability between 1990 and 2005, when limited data was available for calibration, good consistency from 2005 to 2025, and increasing variability towards the end of the projection period. Estimates of HIV incidence, deaths in people living with HIV, and total deaths displayed the largest long-term variability, with standard deviations between 35 and 65% of the cross-model means. Despite this variability, all models predicted a gradual decline in HIV incidence in the long-term. Projections related to the UNAIDS 95-95-95 targets were more consistent, with the coefficients of variation below 0.1 for all groups except children. CONCLUSIONS: While models produced consistent estimates for several outputs, there are areas of variability that should be investigated. This is important if projections are to be used in subsequent cost-effectiveness studies.
背景:数学模型越来越多地被用于为 HIV 政策和规划提供信息。比较使用不同数学模型获得的估计值可以检验估计值的稳健性,并突出研究差距。作为旨在确定 HIV 服务资金最佳分配的更大项目的一部分,在这项研究中,我们比较了南非 HIV 流行的五个数学模型的预测结果:EMOD-HIV、Goals、HIV-Synthesis、Optima 和 Thembisa。
方法:五个建模小组对总人口、HIV 发病率、HIV 流行率、已诊断出的 HIV 感染者比例、ART 覆盖率、接受 ART 治疗且病毒得到抑制的患者比例、艾滋病相关死亡人数、总死亡人数以及接受割礼的成年男性比例进行了估计。在 1990 年至 2040 年期间,按照“现状”情景进行了估计。对于每个输出变量,我们通过计算变异系数并检查随时间的趋势来评估模型估计的一致性。
结果:对于大多数输出,在 1990 年至 2005 年期间,由于可供校准的数据有限,模型之间存在显著的差异,从 2005 年至 2025 年,一致性良好,而在预测期结束时,差异逐渐增大。HIV 发病率、HIV 感染者死亡人数和总死亡人数的估计值显示出最大的长期差异,其标准偏差为跨模型平均值的 35%至 65%之间。尽管存在这种差异,但所有模型都预测 HIV 发病率在长期内会逐渐下降。与 UNAIDS 95-95-95 目标相关的预测结果更为一致,除了儿童之外,所有组的变异系数都低于 0.1。
结论:尽管模型对几个输出结果产生了一致的估计,但仍存在一些需要调查的差异领域。如果要在后续的成本效益研究中使用预测结果,这一点很重要。
BMC Public Health. 2020-9-9
Lancet Glob Health. 2025-6
Value Health. 2020-11
South Afr J HIV Med. 2017-7-27